Algebraic Number Theory

Dr V. Dokchitser (V.Dokchitser@dpmms.cam.ac.uk) Typeset by Aaron Chan (akyc2@cam.ac.uk)

Last update: July 19, 2010

1 Number Fields

1.1 Ring of integers

Definition 1.1

A <u>number field</u> K is a finite field extension of \mathbb{Q} . (Its degree $[K : \mathbb{Q}] = \dim_{\mathbb{Q}} K$ as vector space is finite)

Definition 1.2

An algebraic integer α is an algebraic number s.t. it is a root of a monic polynomial with integer coefficient.

(Equivalently, if the monic minimal polynomial for α over \mathbb{Q} has \mathbb{Z} coefficient)

Definition 1.3

Let K be a number field, its <u>ring of integers</u> \mathcal{O}_K consists of the element of K that are algebraic integers.

Proposition 1.4

(i) \mathcal{O}_K is a (Noetherian) ring (ii) $\operatorname{rk}_{\mathbb{Z}} \mathcal{O}_K = [K : \mathbb{Q}]$ (i.e. as an abelian group, $\mathcal{O}_K \cong \mathbb{Z}^{\oplus [K : \mathbb{Q}]}$) (iii) $\forall \alpha \in K, \exists n \in \mathbb{Z}, n \neq 0 \text{ s.t. } n\alpha \in \mathcal{O}_K$

Example:

Number Fields K	Ring of integers \mathcal{O}_K
Q	Z
$\mathbb{Q}(i)$	$\mathbb{Z}[i]$
$\mathbb{Q}(\sqrt{d}), d \in \mathbb{Z} \setminus \{0\}$ squarefree	$\begin{cases} \mathbb{Z}[\sqrt{d}] & d \equiv 2,3 \mod 4\\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & d \equiv 1 \mod 4 \end{cases}$
$\mathbb{Q}(\zeta_n)$ (ζ_n primitive <i>n</i> -th root of 1)	$\mathbb{Z}[\zeta_n]$

Example:

$$K = \mathbb{Q}(\sqrt{-3}) = \mathbb{Q}(\zeta_3) \qquad \mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{-3}}{2}] = \mathbb{Z}[\zeta_3] \quad (\zeta_3 = \frac{-1-\sqrt{-3}}{2}) \text{ (see notes for picture)}$$

Proposition 1.5

(i) \mathcal{O}_K is the maximal subring of K which is finitely generated as an abelian group

(ii) \mathcal{O}_K is integrally closed in K (i.e. if $f \in \mathcal{O}_K[x]$ monic and $f(\alpha) = 0$ $\alpha \in K$, then $\alpha \in \mathcal{O}_K$)

Example (on factorisations)

In \mathbb{Z} , however you factorise an integer, you always end up with the same factorisation into irreducible bits, at least up to signs and order.

-The ambiguity in signs comes from the <u>units</u> $\pm 1 \in \mathbb{Z}$

-Unique factorisation in this form fails in general number field

e.g. $\mathbb{Q}[\sqrt{-5}], \mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$

 $6 = 2 \times 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ are genueinly different factorisations (because $\mathbb{Z}[\sqrt{-5}]$ not UFD). To rescue this, works with <u>ideals</u>.

1.2 Units

Definition 1.6

A <u>unit</u> in a number field K is an element $\alpha \in \mathcal{O}_K$ with $\alpha^{-1} \in \mathcal{O}_K$, the group of unit is denote by \mathcal{O}_K^{\times}

Example: Units in \mathbb{Q} are $\mathbb{Z}^{\times} = \{\pm 1\}$ Units in $\mathbb{Q}(i)$ are $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$ Units in $\mathbb{Q}(\sqrt{2})$ are $\mathbb{Z}[\sqrt{2}]^{\times} = \{\pm (1 + \sqrt{2})^n \mid n \in \mathbb{Z}\}$

Theorem 1.7 (Dirichlet's Unit Theorem)

Let K be a number field, then \mathcal{O}_K is finitely generated. More precisely,

$$\mathcal{O}_K^{\times} \simeq \Delta \times \mathbb{Z}^{r_1 + r_2 - 1}$$

where

 $\begin{array}{lll} \Delta &=& \mbox{the (finite) group of roots of unity in } K \\ r_1 &=& \# \mbox{ distinct embedding } K \hookrightarrow \mathbb{R} \\ r_2 &=& \# \mbox{ distinct conjugate pairs of embedding } K \hookrightarrow \mathbb{C} \mbox{, with image } \nsubseteq \mathbb{R} \\ &\quad (\Rightarrow r_1 + 2r_2 = [K:\mathbb{Q}]) \end{array}$

Corollary 1.8

The only number fields with finitely many non-units are \mathbb{Q} , and imaginary quadratic fields (i.e. $\mathbb{Q}(\sqrt{-D})$ for some $D \in \mathbb{Z}^+$)

1.3 Ideals

- **Example 1.9** (i) $K = \mathbb{Q}$ $\mathcal{O}_K = \mathbb{Z}$ $\mathfrak{a} = (17)=$ all multiples of 17 $\alpha \in \mathfrak{a}$ iff it is a multiple of 17 Multiplying ideals: (3)(17) = (51)
 - (ii) $K = \mathbb{Q}(\sqrt{-5})$ $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$ (not PID) (see picture)

An ideal is, in particular, a sublattice of \mathcal{O}_K . In fact, it always has finite index (see later)

Theorem 1.10 (Unique Factorisation of Ideals)

Let K be a number field. Every non-zero ideal of \mathcal{O}_K admits a factorisation into prime ideals. This factorisation is unique up to order.

Definition 1.11

Let $\mathfrak{a}, \mathfrak{b} \leq \mathcal{O}_K$. Then \mathfrak{a} divides \mathfrak{b} (written $\mathfrak{a}|\mathfrak{b}$) if $\mathfrak{a}\mathfrak{c} = \mathfrak{b}$ for some ideal \mathfrak{c} (Equivalently if the prime factorisations $\mathfrak{a} = \mathfrak{p}_1^{n_1} \cdots \mathfrak{p}_k^{n_k}$, $\mathfrak{b} = \mathfrak{p}_1^{m_1} \cdots \mathfrak{p}_k^{m_k}$ we have $n_i \leq m_i \ \forall i$)

Remark. (i) For $\alpha, \beta \in \mathcal{O}_K$, $(\alpha) = (\beta) \iff \alpha = u\beta$ for some $u \in \mathcal{O}_K^{\times}$

- (ii) (nontrivial) For ideals $\mathfrak{a}, \mathfrak{b} \quad \mathfrak{a} \mid \mathfrak{b} \Leftrightarrow \mathfrak{a} \supseteq \mathfrak{b}$
- (iii) To multiply ideals, simply multiply their generators e.g. (2)(3) = (6) $(2, 1 + \sqrt{-5})(2, 1 - \sqrt{5}) = (4, 2 + 2\sqrt{-5}, 2 - 2\sqrt{-5}, 6) = (2)$
- (iv) To add ideals, combine their generators e.g. $(2) + (3) = (2,3) = (1) = \mathcal{O}_K$

Lemma 1.12

 $\mathfrak{a}, \mathfrak{b} \trianglelefteq \mathcal{O}_K, \ \mathfrak{a} = \prod_i \mathfrak{p}_i^{n_i} \quad \mathfrak{b} = \prod_i \mathfrak{p}_i^{m_i}$

(i) $\mathfrak{a} \cap \mathfrak{b} = \prod_{i} \mathfrak{p}_{i}^{\max(n_{i},m_{i})}$ ("lcm") (ii) $\mathfrak{a} + \mathfrak{b} = \prod_{i} \mathfrak{p}_{i}^{\min(n_{i},m_{i})}$ ("gcd")

Proof

Use Remark (ii)

- (i) This is the largest ideal contained in both \mathfrak{a} and \mathfrak{b}
- (ii) This is the smallest ideal containing both \mathfrak{a} and \mathfrak{b}

Lemma 1.13

Let $\alpha \in \mathcal{O}_K \setminus \{0\}$ Then $\exists \beta \in \mathcal{O}_K \setminus \{0\}$ s.t. $\alpha \beta \in \mathbb{Z} \setminus \{0\}$

Proof

Let $X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$ be the minimal polynomial for α (with $a_i \in \mathbb{Z}$ $a_0 \neq 0$) So $\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_1\alpha = -a_0 \in \mathbb{Z} \setminus \{0\}$ So take $\beta = \alpha^{n-1} + a_{n-1}\alpha^{n-2} + \dots + a_1$

Corollary 1.14

If $\mathfrak{a} \leq \mathcal{O}_K$ is a nonzero ideal, then $[\mathcal{O}_K : \mathfrak{a}] < \infty$

Proof

Pick $\alpha \in \mathfrak{a} \setminus \{0\}$, and $\beta \in \mathcal{O}_K \setminus \{0\}$ with $N = \alpha \beta \in \mathbb{Z} \setminus \{0\}$. Then $N \in \mathfrak{a}$ and $[\mathcal{O}_K : \mathfrak{a}] \leq [\mathcal{O}_K : (N)] = [\mathcal{O}_K : N \mathcal{O}_K] = |N|^{[K:\mathbb{Q}]} < \infty$

Definition 1.15

The <u>norm</u> of nonzero ideal $\mathfrak{a} \leq \mathcal{O}_K$ is $N(a) = [\mathcal{O}_K : \mathfrak{a}]$

Lemma 1.16

Let $\alpha \in \mathcal{O}_K \setminus \{0\}$. Then $|N_{K/\mathbb{Q}}(\alpha)| = N((\alpha))$

Proof

Let v_1, \ldots, v_n be a \mathbb{Z} -basis for \mathcal{O}_K , and write $T_\alpha : K \to K$ for the linear map $T_\alpha(v) = \alpha v$ Then

$$N_{K/\mathbb{Q}}(\alpha) = |\det T_{\alpha}| = [\langle v_1, \dots, v_n \rangle :\langle \alpha v_1, \dots, \alpha v_n \rangle]$$
$$= [\mathcal{O}_K : (\alpha)] = N((\alpha))$$

1.4 Ideal Class Group

K a number field. Define an equivalence relation on nonzero ideals of \mathcal{O}_K by

$$\mathfrak{g} \sim \mathfrak{h} \text{ if } \exists \lambda \in K^{\times} s.t. \, \mathfrak{a} = \lambda \, \mathfrak{b} \tag{1.1}$$

The ideal class group of K, Cl_K , is the set of classes, {non-zero ideals}/ ~ It is a group, the group structure coming from multiplication of ideals. The principal ideals form the identity class, and \mathcal{O}_K is UFD \Leftrightarrow $\operatorname{Cl}_K = 1$

Theorem 1.17

 Cl_K is finite

<u>Exercise</u>: Let $K = \mathbb{Q}(\sqrt{-D})$ for $D \in \mathbb{Z}_+$, show that two non-zero ideals $\mathfrak{a}, \mathfrak{b} \leq \mathcal{O}_K$ have the same class in Cl_K iff they are homothetic (i.e. the lattices in \mathbb{C} given by the points of \mathfrak{a} and \mathfrak{b} are related by a scaling and a rotation about 0) (elements of $\operatorname{Cl}_K \leftrightarrow$ shapes of lattices)

1.5**Primes and Modular Arithmetic**

Definition 1.18

A prime \mathfrak{p} of a number field K is a nonzero prime ideal of \mathcal{O}_K . Its <u>residue field</u> is $\mathcal{O}_K/\mathfrak{p}$ Its (absolute) residue degree is $f_p = [\mathcal{O}_K / \mathfrak{p} : \mathbb{F}_p]$ where $p = \operatorname{char} \mathcal{O}_K / \mathfrak{p}$ is its residue characteristic

Lemma 1.19

The residue field of a prime is a finite field

Proof

 \mathfrak{p} prime $\Rightarrow \mathcal{O}_K / \mathfrak{p}$ is an integral domain. Also, $|\mathcal{O}_K/\mathfrak{p}| = N(\mathfrak{p})$ is finite $\Rightarrow \mathcal{O}_K/\mathfrak{p}$ is a field

Note: The size of the residue field at \mathfrak{p} is $N(\mathfrak{p})$

Example:

- $K = \mathbb{Q}, \ \mathcal{O}_K = \mathbb{Z}, \ \mathfrak{p} = (17) \Rightarrow$ residue field $\mathcal{O}_K / \mathfrak{p} = \mathbb{Z} / (17) = \mathbb{F}_{17}$
- $K = \mathbb{Q}(i), \ \mathcal{O}_K = \mathbb{Z}[i], \ \mathfrak{p} = (2+i), \ \mathcal{O}_K / \mathfrak{p} = \mathbb{F}_5$ (representatives 0,1,i+1,2,2+i)
 - If $\mathfrak{p} = (3)$, $\mathcal{O}_K / \mathfrak{p} = \mathbb{F}_9(= \mathbb{F}_3[i])$ " (see picture)

• $K = \mathbb{Q}(\sqrt{d})$ $d \equiv 2,3 \mod 4$ (for simplicity) $\mathcal{O}_K = \mathbb{Z}[\sqrt{d}]$ Let \mathfrak{p} be a prime of K, with residue characteristic p. Then $\mathcal{O}_K/\mathfrak{p}$ is generated by \mathbb{F}_p and the image of \sqrt{d} . The latter is some root of $X^2 - d$ over \mathbb{F}_p $\Rightarrow \quad \mathcal{O}_K / \mathfrak{p} = \begin{cases} \mathbb{F}_p & \text{if } d \text{ is a squre mod } p \\ \mathbb{F}_{p^2} & \text{otherwise} \end{cases}$

<u>Notation</u>: If $0 \neq \mathfrak{a} \trianglelefteq \mathcal{O}_K$, we say

(1.2) $x \equiv y$ $\mod \mathfrak{a}$

(e.g. $3 \equiv i \mod (2+i)$ in the first example)

Theorem 1.20 (Chinese Remainder Theorem)

K number field, $\mathfrak{p}_1, \ldots, \mathfrak{p}_k$ distinct primes. Then

 $\mathcal{O}_K / \mathfrak{p}_1^{n_1} \cdots \mathfrak{p}_k^{n_k} \to \mathcal{O}_K / \mathfrak{p}_1^{n_1} \times \cdots \times \mathcal{O}_K / \mathfrak{p}_k^{n_k}$ $x \mod \mathfrak{p}_1^{n_1} \cdots \mathfrak{p}_k^{n_k} \mapsto (x \mod \mathfrak{p}_1^{n_1}, \dots, x \mod \mathfrak{p}_k^{n_k})$ (1.3)

(1.4)

is a ring isomorphism

Proof

Define $\psi : \mathcal{O}_K \to \mathcal{O}_K / \mathfrak{p}_1^{n_1} \times \cdots \times \mathcal{O}_K / \mathfrak{p}_k^{n_k}$ by $\psi(x) = (x \mod \mathfrak{p}_1^{n_1}, \dots, x \mod \mathfrak{p}_k^{n_k})$ Then $\ker \psi = \{x \mid x \equiv 0 \mod \mathfrak{p}_i^{n_i} \forall i\} = \bigcup_i \mathfrak{p}_i^{n_i} = \prod_i \mathfrak{p}_i^{n_i}$ by Lemma 1.12(i)

Remains to show that ψ is surjective: By Lemma 1.12(ii),

$$\begin{aligned} & \mathfrak{p}_{j}^{n_{j}} + \prod_{i \neq j} \mathfrak{p}_{i}^{n_{i}} = \mathcal{O}_{K} \\ \Rightarrow \ \exists \alpha \in \mathfrak{p}_{j}^{n_{j}}, \ \beta \in \prod_{i \neq j} \mathfrak{p}_{i}^{n_{i}} \text{ s.t. } \alpha + \beta = 1 \\ \Rightarrow \begin{cases} \beta \equiv 0 \mod \mathfrak{p}_{i}^{n_{i}} \ \forall i \neq j \\ \beta \equiv 1 \mod \mathfrak{p}_{j}^{n_{j}} \end{cases} \end{aligned}$$

Thus $(0, \ldots, 0, 1, 0, \ldots, 0) \in \operatorname{Im} \psi \, \forall j \ (1 \text{ at } j \text{-th place}) \Rightarrow \psi \text{ surjective}$

<u>Remark</u>: Chinese Remainder Theorem implies that we can solve any system of congrueces

 $x \equiv a_1 \mod \mathfrak{p}_1^{n_1}$ \vdots $x \equiv a_k \mod \mathfrak{p}_k^{n_k}$

(This is called the Weak Approximation Theorem)

Lemma 1.21

 $\mathfrak{p} \leq \mathcal{O}_K$ prime ideal

- (i) $|\mathcal{O}_K / \mathfrak{p}^n| = N(\mathfrak{p})^n$ (think as " $|\mathbb{F}_\mathfrak{p}|$ ")
- (ii) $\mathfrak{p}^n / \mathfrak{p}^{n+1} \cong \mathcal{O}_K / \mathfrak{p}$ as an \mathcal{O}_K -module (as an abelian group)

Proof

 $(ii) \Rightarrow (i): \qquad |\mathcal{O}_K / \mathfrak{p}^n| = |\mathcal{O}_K / \mathfrak{p}|| \mathfrak{p} / \mathfrak{p}^2 | \cdots | \mathfrak{p}^{n-1} / \mathfrak{p}^n| = N(\mathfrak{p})^n$

(ii): By unique factorisation $\mathfrak{p}^n \neq \mathfrak{p}^{n+1}$, so take $\pi \in \mathfrak{p}^n \setminus \mathfrak{p}^{n+1}$ (i.e. $\mathfrak{p}^n | (\pi), \mathfrak{p}^{n+1} \nmid (\pi)$) Let $\phi : \mathcal{O}_K \to \mathfrak{p}^n / \mathfrak{p}^{n+1}$ by $\phi(x) = \pi x \mod \mathfrak{p}^{n+1}$

 $\ker \phi = \{x \mid \pi x \in \mathfrak{p}^{n+1}\} = \{x \mid \mathfrak{p}^{n+1} \mid (\pi)(x)\} = \{x \mid \mathfrak{p} \mid (x)\} = \mathfrak{p}$ (1.5)

$$\operatorname{Im}\phi = \mathfrak{p}^n/\mathfrak{p}^{n+1} \tag{1.6}$$

since
$$(\pi) + \mathfrak{p}^{n+1} = \mathfrak{p}^n$$
 by Lemma (1.12)(ii) (1.7)

By First Isomorphism Theorem, $\mathcal{O}_K / \mathfrak{p} \xrightarrow{\sim} \mathfrak{p}^n / \mathfrak{p}^{n+1}$

Corollary 1.22

 $N(\mathfrak{a}\,\mathfrak{b}) = N(\mathfrak{a})N(\mathfrak{b})$

Proof

Follows from Theorem 1.20 and Lemma 1.21

Corollary 1.23

 $\mathfrak{a} \ni N(\mathfrak{a})$ (True for prime ideals, as char $\mathcal{O}_K / \mathfrak{p} \equiv 0 \mod \mathfrak{p}$, so $|\mathcal{O}_K / \mathfrak{p}| \in \mathfrak{p}$, and use multiplicativity)

(In fact, this is obvious anyway as $N(\mathfrak{a})$ must be zero in any abelian group of order $N(\mathfrak{a})$. In particular, in $\mathcal{O}_K / \mathfrak{a}$; i.e. $\mathfrak{a} \ni N(\mathfrak{a})$)

1.6 Extending the Number Field

Example: $\mathbb{Q}(i)/\mathbb{Q}$ Take primes in \mathbb{Q} and factorise in $\mathbb{Q}(i)$

$$2\mathbb{Z}[i] = (2) = (1+i)^2 \qquad \leftarrow 2 \text{ ramifies} \qquad (1.8)$$

$$3\mathbb{Z}[i] = (3) \text{ is prime} \qquad \leftarrow 3 \text{ inert} \qquad (1.9)$$

 $3\mathbb{Z}[i] = (3) \text{ is prime} \qquad \leftarrow 3 \text{ inert} \qquad (1.9)$ $5\mathbb{Z}[i] = (5) = (2+i)(2-i) \qquad \leftarrow 5 \text{ splits} \qquad (1.10)$

Note that $\mathfrak{p} \ni N(\mathfrak{p})$ and hence some prime number p, so p|(p). Thus factorising 2, 3, 5, 7, ... yields <u>all</u> the primes of $\mathbb{Q}(i)$

Definition 1.24

Let L/K be an extension of number fields, and $\mathfrak{a} \leq \mathcal{O}_K$ ideal. Then <u>conorm</u> of \mathfrak{a} is the ideal $\mathfrak{a} \mathcal{O}_L$ of \mathcal{O}_L the ideal generated by the elements of \mathfrak{a} in \mathcal{O}_L Equivalently, if $\mathfrak{a} = (\alpha_1, \ldots, \alpha_n)$ as an \mathcal{O}_K -ideal, then $\mathfrak{a} \mathcal{O}_L = (\alpha_1, \ldots, \alpha_n)$ as an \mathcal{O}_L -ideal

Note:

$$(\mathfrak{a} \mathcal{O}_L)(\mathfrak{b} \mathcal{O}_L) = (\mathfrak{a} \mathfrak{b}) \mathcal{O}_L$$
$$\mathfrak{a} \mathcal{O}_M = (\mathfrak{a} \mathcal{O}_L) \mathcal{O}_M \text{ when } K \subseteq L \subseteq M$$

Warning: Sometimes write \mathfrak{g} for $\mathfrak{g}\mathcal{O}_L$ as well.

Proposition 1.25

L/K extension of number fields, $\mathfrak{a} \subseteq \mathcal{O}_K$ a non-zero ideal. Then

$$N(\mathfrak{a} \mathcal{O}_L) = N(\mathfrak{a})^{[L:K]}$$
(1.11)

Proof

If $\mathfrak{a} = (\alpha)$ is principal, then (by Lemma 1.16)

$$N(\mathfrak{a} \mathcal{O}_L) = |N_{L/\mathbb{Q}}(\alpha)| = |N_{K/\mathbb{Q}}(\alpha)|^{[L:K]} = N(\mathfrak{a})^{[L:K]}$$

so all ok. In general, $\mathfrak{a}^k = (\alpha)$ for some k, (since Cl_K is finite) Hence $N(\mathfrak{a} \mathcal{O}_L)^k = N(\mathfrak{a})^{k[L:K]}$, and so $N(\mathfrak{a} \mathcal{O}_L) = N(\mathfrak{a})^{[L:K]}$

Definition 1.26

A prime \mathfrak{q} of L <u>lies above</u> a prime \mathfrak{p} of K if $\mathfrak{q} | \mathfrak{p} \mathcal{O}_L$ (Equivalently, if $\mathfrak{p} \mathcal{O}_L = \mathfrak{q} \times$ "other stuff" Equivalently, if $\mathfrak{q} \supseteq \mathfrak{p}$)

Lemma 1.27

L/K number fields. Every prime of L lies above a unique prime of K: q lies above $q \cap \mathcal{O}_K$

Proof

 $\mathfrak{q} \cap \mathcal{O}_K$ is a prime ideal of \mathcal{O}_K , and it is non-zero as, for example, it contains $N(\mathfrak{q})$ (Corollary 1.23). So \mathfrak{q} lies above $\mathfrak{p} = \mathfrak{q} \cap \mathcal{O}_K$ If \mathfrak{q} also lies above $\mathfrak{p}' \neq \mathfrak{p}$, then $\mathfrak{q} \supseteq \mathfrak{p} + \mathfrak{p}' = \mathcal{O}_K \ni \{1\} \quad \# \qquad \square$

Lemma 1.28

Suppose $\mathfrak{q} \trianglelefteq \mathcal{O}_K$ lies above $\mathfrak{p} \trianglelefteq \mathcal{O}_K$ Then $\mathcal{O}_L / \mathfrak{q}$ is a field extension of $\mathcal{O}_K / \mathfrak{p}$

Proof

Define

$$\phi: \mathcal{O}_K / \mathfrak{p} \to \mathcal{O}_L / \mathfrak{q} \tag{1.12}$$

$$x \mod \mathfrak{p} \mapsto x \mod \mathfrak{q} \tag{1.13}$$

This is well-defined as $\mathfrak{q} \supseteq \mathfrak{p}$

This is ring homomorphism (and $1 \mapsto 1$), so has no kernel as $\mathcal{O}_K / \mathfrak{p}$ is a field, i.e. an embedding $\mathcal{O}_K / \mathfrak{p} \hookrightarrow \mathcal{O}_L / \mathfrak{q}$

<u>Note</u> (to the proof): The "reduction mod q" map in \mathcal{O}_L extends the "reduction mod \mathfrak{p} " map in \mathcal{O}_K

Example: $\mathbb{Q}(i)/\mathbb{Q}$ p=3 $\mathfrak{p} = (3)$ Note that $n \mathbb{Z}[i] = (n) \mathcal{O}_L$ has norm $n^2 = n^{[\mathbb{Q}(i):\mathbb{Q}]}$ (c.f. Proposition 1.25)

Definition 1.29

If \mathfrak{q} lies above \mathfrak{p} , then its residue degree is $f_{\mathfrak{q/p}} = [\mathcal{O}_L / \mathfrak{q} : \mathcal{O}_K / \mathfrak{p}]$ Its ramification degree is the exponent $e_{\mathfrak{q/p}}$ in the prime factorisation $\mathfrak{p} \mathcal{O}_L = \mathfrak{q}^{e_{\mathfrak{q/p}}} \prod$ (other primes)

Theorem 1.30

L/K an extension of number fields, \mathfrak{p} a prime of K

(i) If
$$\mathfrak{p} \mathcal{O}_L$$
 decomposes as $\mathfrak{p} \mathcal{O}_L = \prod_{i=1}^m \mathfrak{q}_i^{e_i}$ (\mathfrak{q}_i distinct, $e_i = e_{\mathfrak{q}_i/\mathfrak{p}}, f_i = f_{\mathfrak{q}_i/\mathfrak{p}}$). Then

$$\sum_{i=1}^m e_i f_i = [L:K]$$
(1.14)

(ii) If M/L a further field extension, \mathfrak{r} lies above \mathfrak{q} lies above \mathfrak{p} (in M, L, K respectively) Then

$$e_{\mathfrak{r}/\mathfrak{q}}e_{\mathfrak{q}/\mathfrak{p}} = e_{\mathfrak{r}/\mathfrak{p}} \tag{1.15}$$

and
$$f_{\mathfrak{r}/\mathfrak{q}}f_{\mathfrak{q}/\mathfrak{p}} = f_{\mathfrak{r}/\mathfrak{p}}$$
 (1.16)

 \mathbf{Proof}

(i)
$$N(\mathfrak{p})^{[L:K]} = (\text{Prop1.25}) \ N(\mathfrak{p} \mathcal{O}_L) = N(\prod \mathfrak{q}_i^{e_i}) = (\text{Cor1.22}) \prod N(\mathfrak{q}_i)^{e_i} = \prod N(\mathfrak{q})^{f_i e_i} = N(\mathfrak{q})^{\sum e_i f_i}$$

(ii) Multiplicativity of *e* follows by writing out the prime decomposition of $\mathfrak{p} \mathcal{O}_M$. That of *f* is the Tower Law: $[\mathcal{O}_M/\mathfrak{r}:\mathcal{O}_L/\mathfrak{q}][\mathcal{O}_L/\mathfrak{q}:\mathcal{O}_K/\mathfrak{p}] = [\mathcal{O}_M/\mathfrak{r}:\mathcal{O}_K/\mathfrak{p}]$

Definition 1.31

L/K extension of number fields, \mathfrak{p} a prime of K with $\mathfrak{p} \mathcal{O}_L = \prod_{i=1}^m \mathfrak{q}_i^{e_i}$ Then \mathfrak{p} splits completely in L if $m = [L:K], m > 1 \ (\Rightarrow e_i = f_i = 1)$ and \mathfrak{p} is totally ramified in L if $m = f_1 = 1, e_1 = [L:K]$ We will see that when L/K is Galois then $e_i = e_j, f_i = f_j \ \forall i, j$. Then, say \mathfrak{p} is ramified at $e_1 > 1$ (being unambiguous) or is unramified if $e_1 = 1$

Example:

5 splits (completely) in $\mathbb{Q}(i)/\mathbb{Q}$ (5 = (2 + i)(2 - i)) 2 is (totally) ramified in $\mathbb{Q}(i)/\mathbb{Q}$ (2 = (1 + i)²) p is totally ramified in $\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}$, ζ_{p^n} =prime p^n -th root of unity

Theorem 1.32 (Kummer-Dedekind)

L/K an extension of number fields.

Suppose $[\mathcal{O}_L : \mathcal{O}_K[\alpha]] = N < \infty$ for some algebraic integer $\alpha \in \mathcal{O}_L$ with minimal polynomials $f(X) \in \mathcal{O}_K[X]$

Let $\mathfrak{p} \subseteq \mathcal{O}_K$ be a prime ideal s.t. $\mathfrak{p} \nmid N \ (\Rightarrow \operatorname{char} \mathcal{O}_K / \mathfrak{p} \nmid N)$

 $f(X) \mod \mathfrak{p} = \prod_{i=1}^{m} \bar{g}_i(X)^{e_i} \qquad (\bar{g}_i \text{ distinct irreducible})$ $\mathfrak{p} \mathcal{O}_L = \prod_{i=1}^{m} \mathfrak{q}_i^{e_i} \qquad \mathfrak{q}_i = \mathfrak{p} \mathcal{O}_L + g_i(\alpha) \mathcal{O}_L$ If $g_i(X) \in \mathcal{O}_K[\overset{i-1}{X}]$ s.t. $\bar{g}_i(X) = g_i(X) \mod \mathfrak{p}$

then

and \mathfrak{q}_i are distinct primes of L with $e_{\mathfrak{q}_i/\mathfrak{p}} = e_i$ and $f_{\mathfrak{q}_i/\mathfrak{p}} = \deg \bar{g}_i$

Example:

 $\overline{K = \mathbb{Q}}$ $L = \mathbb{Q}(\zeta_5)$ $\zeta = \zeta_5$ =primitive 5-th root of unity $\mathcal{O}_L = \mathbb{Z}[\zeta]$ Take $\alpha = \zeta$, so N = 1, $f(X) = X^4 + X^3 + X^2 + X + 1$ $f(X) \mod 2$ is irreducible \Rightarrow (2) is prime in \mathcal{O}_L , residue field is \mathbb{F}_{16} $f(X) \mod 3$ is irreducible \Rightarrow (3) is prime in \mathcal{O}_L , residue field is \mathbb{F}_{81} $f(X) \mod 5 = (X-1)^4 \Rightarrow (5) = (5, \zeta - 1)^4$ $f(X) \mod 7$ is irreducible $\begin{array}{ll} f(X) \mod 11 = (X-4)(X-9)(X-5)(X-3) & \Rightarrow & (11) = (11,\zeta-4)(11,\zeta-9)(11,\zeta-5)(11,\zeta-3) \\ f(X) \mod 19 = (X^2+5X+1)(X^2-4X+1) & \Rightarrow & (19) = (19,\zeta^2+5\zeta+1)(19,\zeta^2-4\zeta+1) \end{array}$

Example:

 $\frac{p_{Xample}}{K} = \mathbb{Q} \quad L = \mathbb{Q}(\zeta_{p^n}) \quad \zeta = \zeta_{p^n} = \text{primitive } p^n \text{th root of unity and } p \text{ prime} \\
\text{minimal polynomial } f(X) = \frac{X^{p^n} - 1}{X^{p^{n-1}} - 1} \equiv (X - 1)^{p^n - p^{n-1}} \mod p \quad \Rightarrow \quad p \text{ is totally ramified in } \mathbb{Q}(\zeta) / \mathbb{Q} \\
\text{If } q \neq p \text{ is also prime,} \qquad \gcd(X^{p^n} - 1 \mod q, \frac{d}{dx}(X^{p^n} - 1) \mod q) = 1$ $\Rightarrow X^{p^n} - 1 \mod q$ has no repeated roots (in $\overline{\mathbb{F}_q}$) $\Rightarrow f(X) \mod q$ has no repeated roots all $e_i = 1$, i.e. q is unramified in $\mathbb{Q}(\zeta)$ \Rightarrow

Remark:

Cannot always find α s.t. $\mathcal{O}_L = \mathcal{O}_K[\alpha]$ (i.e. N = 1)

However, by the Primitive Element Theorem, can find α s.t. $L = K(\alpha)$. Scalar α (by an integer) can ensure that $\alpha \in \mathcal{O}_L$. Then $\mathcal{O}_L[\alpha]$ has finite index in \mathcal{O}_L

Therefore, the theorem allows us to decompose all except possibly a finite number of primes.

Proof of Kummer-Dedekind Theorem

Write $A = \mathcal{O}_K[\alpha], \mathbb{F} = \mathcal{O}_K / \mathfrak{p}, p = \operatorname{char} \mathbb{F}$

•

$$\begin{array}{rcl} \alpha & \leftrightarrow & x & (1.17) \\ A/(\mathfrak{p} A + g_i(\alpha) A) & \stackrel{\sim}{\leftarrow} & \mathcal{O}_K[X]/(f(X), \mathfrak{p}, g_i(X)) \\ & \cong \mathbb{F}[X]/(\bar{f}(X), \bar{g}_i(X)) \\ & = \mathbb{F}[X]/(\bar{g}_i(X)) & (1.18) \\ & \text{a field af degree } f_i = \deg \bar{g}_i \text{ over } \mathbb{F} & (\bar{g}_i \text{ is irreducible}) \end{array}$$

• Pick $M \in \mathbb{Z}$ s.t. $NM \equiv 1 \mod p$, and consider

$$\phi: A/\mathfrak{p}A + g_i(\alpha)A \to \mathcal{O}_L/\mathfrak{q}_i \tag{1.19}$$

$$\phi(x \mod \mathfrak{p} A + g_i(\alpha)A) = x \mod \mathfrak{q}_i \tag{1.20}$$

 $\frac{\phi \text{ well-defined:}}{\phi \text{ is surjective:}} \qquad \begin{array}{ll} \text{Since} & \mathfrak{q}_i \supseteq \mathfrak{p} A + g_i(\alpha) A \\ \text{If } x \in \mathcal{O}_L, \text{ then } Nx \in A \text{ and} \end{array}$

$$\phi(MNx) = MNx \mod \mathfrak{q}_i \tag{1.21}$$

$$= x \mod \mathfrak{q}_i \tag{1.22}$$

as $MN \equiv 1 \mod \mathfrak{q}_i \ni p$

- $\mathcal{O}_L / \mathfrak{q}_i$ is non-zero, otherwise $1 \in \mathfrak{p} \mathcal{O}_L + g_i(\alpha) \mathcal{O}_L$
- \Rightarrow both p and $MN \in \mathfrak{p} A + g_i(\alpha)A$
- $\Rightarrow 1 \in \mathfrak{p} A + g_i(\alpha) A \quad \# \text{ to step } 1$
- $\Rightarrow \phi$ is an isomorphism
- $\Rightarrow \mathcal{O}_L / \mathfrak{q}_i$ is a field extension of \mathbb{F} of degree $f_i = \deg \bar{g}_i$ and \mathfrak{q}_i is prime
- For $i \neq j$, as $gcd(\bar{g}_i(X), \bar{g}_j(X)) = 1$, $\exists \lambda(X), \mu(X) \in \mathcal{O}_K[X]$ s.t.

$$\lambda(X)g_i(X) + \mu(X)g_j(X) \equiv 1 \mod \mathfrak{p}$$
(1.23)

Then $\mathbf{q}_i + \mathbf{q}_j$ contains both \mathbf{p} and $\lambda(\alpha)g_i(\alpha) + \mu(\alpha)g_j(\alpha) \equiv 1 \mod \mathbf{p}$ $\Rightarrow \mathbf{q}_i + \mathbf{q}_j = \mathcal{O}_L \Rightarrow \mathbf{q}_i \neq \mathbf{q}_j$ for $i \neq j$

•

$$\prod_{i} \mathfrak{q}_{i}^{e_{i}} = \prod_{i} \left(\mathfrak{p} \mathcal{O}_{L} + g_{i}(\alpha) \mathcal{O}_{L} \right)^{e_{i}}$$
(1.24)

$$\subseteq \mathfrak{p} \mathcal{O}_L + \left(\prod_i g_i(\alpha)^{e_i}\right) \mathcal{O}_L \tag{1.25}$$

$$= \mathfrak{p} \mathcal{O}_L \quad \text{since} \quad \prod g_i(\alpha)^{e_i} \equiv f(\alpha) = 0 \mod \mathfrak{p}$$
(1.26)

But

$$N(\prod_{i} \mathfrak{q}_{i}^{e_{i}}) = \prod_{i} \left(|\mathbb{F}|^{f_{i}} \right)^{e_{i}} \text{ (by Step 2)}$$
$$= |\mathbb{F}|^{\sum e_{i}f_{i}} = |\mathbb{F}|^{\deg f} = |\mathbb{F}|^{[L:K]}$$
$$= N(\mathfrak{p}\mathcal{O}_{L}) \text{ by Proposition 1.25}$$
(1.27)

$$\Rightarrow \qquad \prod_{i=1}^{m} \mathfrak{q}_{i}^{e_{i}} = \mathfrak{p} \mathcal{O}_{L}$$
(1.28)

Proposition 1.33

 L/\mathbb{Q} finite extension, $\alpha \in \mathcal{O}_L$ with $L = \mathbb{Q}(\alpha)$ minimal polynomial $f(X) \in \mathbb{Z}[X]$. If $f(X) \mod p$ has distinct roots (in $\overline{\mathbb{F}}_p$) then $[\mathcal{O}_L : \mathbb{Z}[\alpha]]$ is coprime to p (so Kummer-Dedekind Theorem applies)

Proof

Let F=splitting field of $f, f(X) = \prod_i (X - \alpha_i) \quad \alpha_i \in F$ Fix \mathfrak{p} a prime in F above (p). As f(X) has no repeated roots in $\overline{\mathbb{F}}_p$ and $\overline{f}(X) = \prod_i (X - \overline{\alpha}_i)$ (- denotes reduction mod \mathfrak{p}) $\begin{array}{ll} \Rightarrow & \overline{\alpha}_i \text{ are distinct in } \mathcal{O}_F \,/\, \mathfrak{p} \\ \Rightarrow & \prod_{i < j} (\alpha_i - \alpha_j) \neq 0 \mod \mathfrak{p} \end{array}$ Let $\beta_1, \beta_2, \ldots, \beta_n$ be a \mathbb{Z} -basis of \mathcal{O}_L $(n = [L : \mathbb{Q}])$

$$\begin{pmatrix} 1\\ \alpha\\ \alpha^2\\ \vdots\\ \alpha^{n-1} \end{pmatrix} = M \begin{pmatrix} \beta_1\\ \beta_2\\ \vdots\\ \beta_n \end{pmatrix} \quad \text{for some } M \in Mat_n(\mathbb{Z}) \text{ with } \det M = [\mathcal{O}_L : \mathbb{Z}[\alpha]] \quad (1.29)$$

Writing $id = \sigma_1, \sigma_2, \ldots, \sigma_n$ for the embeddings of $L \hookrightarrow F$

i >

$$\prod_{i>j} (\alpha_i - \alpha_j) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \vdots \\ \alpha_1^2 & \vdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \alpha_n^{n-1} \end{vmatrix}$$
(1.30)
$$= \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \sigma_2(\alpha_2) & \vdots \\ \alpha_1^2 & \vdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$$
(1.31)

$$\begin{vmatrix} \alpha_1^{n-1} & \sigma_2(\alpha_2)^{n-1} & \sigma_n(\alpha_n)^{n-1} \end{vmatrix}$$

$$= \det M \begin{pmatrix} \beta_1 & \sigma_2(\beta_1) & \cdots & \sigma_n(\beta_1) \\ \beta_2 & \vdots & & \vdots \\ \beta_3 & \vdots & \cdots & \vdots \\ \vdots & \vdots & & \vdots \\ \beta_n & \sigma_2(\beta_2) & & \sigma_n(\beta_n) \end{pmatrix}$$
(1.32)

$$= [\mathcal{O}_L : \mathbb{Z}[\alpha]]B \quad \text{for some } B \in \mathcal{O}_K$$
(1.33)

(1.34)

$$\Rightarrow \qquad p \nmid [\mathcal{O}_L : \mathbb{Z}[\alpha]] \qquad \qquad \Box$$

Proposition 1.34

K number field, \mathfrak{p} prime of K.

Suppose $f(X) = X^n + a_{n-1}X^{n-1} + \dots + a_0 \in \mathcal{O}_K[X]$ is Eisenstein w.r.t \mathfrak{p} (i.e. $\mathfrak{p}|(a_i) \forall i, \mathfrak{p}^2 \nmid (a_0)$) Then $K(\alpha)/K$ has degree $n = \deg f$ and \mathfrak{p} is totally ramified in $K(\alpha)$, where $f(\alpha) = 0$

Proof

see Local Fields

2 Decomposition of Primes

2.1 Action of Galois groups

Let F/K be a Galois extension of number fields. Recall $Gal(F/K) = Aut_K(F)$

- F/K is normal (if $f \in K[X]$ irreducible has a root in $F \Rightarrow f$ splits completely in F)
- $|\operatorname{Gal}(F/K)| = [F:K]$
- $\{\text{subgroup}\} \xrightarrow{\text{one-to-one}} \{\text{intermediate field}\}$

$$H \leq \operatorname{Gal}(F/K) \rightarrow F^H$$
 (fixed field of H) (2.1)

$$\operatorname{Gal}(F/L) \leftarrow K \subseteq L \subseteq F$$
 (2.2)

Example:

•

Lemma 2.1 Let $g \in \text{Gal}(F/K)$ q prime of F above \mathfrak{p} , a prime of K

- (i) $\alpha \in \mathcal{O}_F \Rightarrow g\alpha \in \mathcal{O}_F$ (so $\operatorname{Gal}(F/K)$ acts on \mathcal{O}_F)
- (ii) $\mathfrak{a} \subseteq \mathcal{O}_F$ ideal $\Rightarrow g(\mathfrak{a}) \subseteq \mathcal{O}_F$ ideal
- (iii) $\mathfrak{a}, \mathfrak{b}$ ideals $\Rightarrow g(\mathfrak{a}, \mathfrak{b}) = g(\mathfrak{a})g(\mathfrak{b}), g(\mathfrak{a} + \mathfrak{b}) = g(\mathfrak{a}) + g(\mathfrak{b})$
- (iv) $g(\mathfrak{q})$ is a prime of F above \mathfrak{p} (so $\operatorname{Gal}(F/K)$ acts on the set of primes above \mathfrak{p})
- (v) $e_{\mathfrak{q/p}} = e_{g(\mathfrak{q})/\mathfrak{p}}, f_{\mathfrak{q/p}} = f_{g(\mathfrak{q})/\mathfrak{p}}$

Proof

 Clear

Example: $\overline{K} = \mathbb{Q}$ $F = \mathbb{Q}(i)$ $\mathcal{O}_F = \mathbb{Z}[i]$ $\operatorname{Gal}(F/K) = \{ \operatorname{id}, \operatorname{complex conjugation} \}$

Theorem 2.2

F/K Galois extension of number fields. \mathfrak{p} a prime of K. Then $\operatorname{Gal}(F/K)$ acts transitively on the primes of F above \mathfrak{p}

Proof

Let $\mathfrak{q}_1, \dots, \mathfrak{q}_n$ be the primes above \mathfrak{p} <u>Require to proof:</u> $\exists g \in \operatorname{Gal}(F/K) \text{ s.t. } g(\mathfrak{q}_1) = \mathfrak{q}_2$ Pick $x \in \mathcal{O}_F$ s.t. $\begin{array}{c} x \equiv 0 \mod \mathfrak{q}_1 \\ x \not\equiv 0 \mod \mathfrak{q}_i \forall i \neq 1 \\ \text{(this is possible by Chinese Remainder Theorem)} \\ \text{Then} \\ \end{array}$ $\prod h(x) \in K \cap \mathcal{O}_F \cap \mathfrak{q}_1 = \mathcal{O}_K \cap \mathfrak{q}_1 = \mathfrak{p} \subseteq \mathfrak{q}_2 \qquad (2.3)$

$$\begin{array}{l} \Rightarrow & for some g \\ \Rightarrow & g(x) \equiv 0 \mod \mathfrak{q}_2 & \text{for some } g \\ \Rightarrow & x \equiv 0 \mod g^{-1}(\mathfrak{q}_2) \\ \Rightarrow & g^{-1}(\mathfrak{q}_2) = \mathfrak{q}_1 & \text{by choice of } x \\ \Rightarrow & \mathfrak{q}_2 = g(\mathfrak{q}_1) \end{array}$$

Corollary 2.3

F/K Galois.

If $\mathfrak{q}_1, \mathfrak{q}_2$ lie above \mathfrak{p} , then $\begin{cases} e_{\mathfrak{q}_1/\mathfrak{p}} = e_{\mathfrak{q}_2/\mathfrak{p}} \\ f_{\mathfrak{q}_1/\mathfrak{p}} = f_{\mathfrak{q}_2/\mathfrak{p}} \end{cases}$ (So can write $e_{\mathfrak{p}}$ and $f_{\mathfrak{p}}$ without ambiguity)

2.2 Decomposition Groups

Definition 2.4

Let F/K be a Galois extension of number fields, \mathfrak{q} a prime of F above \mathfrak{p} , a prime of KThe decomposition group $D_{\mathfrak{q}}(=D_{\mathfrak{q}/\mathfrak{p}})$ of \mathfrak{q} (over \mathfrak{p}) i.e.

$$D_{\mathfrak{q/p}} = \operatorname{Stab}_{\operatorname{Gal}(F/K)}(\mathfrak{q}) \tag{2.4}$$

Remark. The decomposition group determines how \mathfrak{p} decomposes in all intermediate extensions.

Example 2.5 $\operatorname{Gal}(F/K) = S_4$ $D_{\mathfrak{q}/\mathfrak{p}} = S_3 < S_4$ $\Rightarrow \exists 4 \text{ primes above } \mathfrak{p}$ (by Orb-Stab Theorem) and action of S_4 on these is the usual action on 4 points

Consider $H = \{ \text{id}, (12)(34) \} \leq S_4$ and $L = F^H$ Gal(F/L) acts transitively on the primes of F above every prime of L \Rightarrow number of primes in L above \mathfrak{p} = number of H-orbits on $\{\mathfrak{q}_1, \mathfrak{q}_2, \mathfrak{q}_3, \mathfrak{q}_4\} = 2$

Remark. If G is a finite group

 $\{\text{transitive } G\text{-sets}\}/\cong \longleftrightarrow \{\text{subgroup of } G\}/\text{conjugacy}$ (2.5)

$$X \quad \longmapsto \quad \operatorname{Stab}(x) \tag{2.6}$$

 $G/H \longleftrightarrow H$ (2.7)

Number of primes in F^H above \mathfrak{p} = number of *H*-orbits on {primes above \mathfrak{p} } = number of *H*-orbits on $G/D_{\mathfrak{q}/\mathfrak{p}}$ = number of double cosets HxD

Note:

 $\begin{array}{l} \underline{\text{Double coset}} \ HxD \ \text{for } x \in G \ \text{is the set} \ \{hxd | h \in H, d \in D\} \\ G = \bigsqcup \ \text{double cosets} \\ \text{If } y \in HxD \quad \Rightarrow \quad HyD = HxD \\ \text{Warning: double cosets can have different sizes, unlike coset} \end{array}$

 $g \in D_{\mathfrak{q}}$ fixes $\mathfrak{q} \Rightarrow$ it acts on $\mathcal{O}_F / \mathfrak{q}$ by

$$x \mod \mathfrak{q} \mapsto g(x) \mod \mathfrak{q}$$
 (2.8)

This gives a natural map

$$D_{\mathfrak{q}} \longrightarrow \operatorname{Gal}((\mathcal{O}_F / \mathfrak{q}) / (\mathcal{O}_K / \mathfrak{p}))$$
 (2.9)

(think it as $\operatorname{Gal}(\mathbb{F}_{\mathfrak{q}} / \mathbb{F}_{\mathfrak{p}}))$

 $\frac{\text{Example:}}{F = \mathbb{Q}(i)} \qquad K = \mathbb{Q} \qquad p = 3$

 $\operatorname{Gal}(F/\mathbb{Q}) = {\operatorname{id}, c}$ where $c = \operatorname{complex \ conjugate} \in D_{(3)}$ Complex conjugation acts as $(a + bi \mod 3) \mapsto (a - bi \mod 3) = ((a + bi)^3 \mod 3)$ which is the Frobenius automorphism $x \mapsto x^3$ on \mathbb{F}_9

Theorem 2.6

F/K Galois, \mathfrak{q} prime of F above \mathfrak{p} prime of KThen the natural map

$$D_{\mathfrak{q}} \longrightarrow \operatorname{Gal}((\mathcal{O}_F / \mathfrak{q}) / (\mathcal{O}_K / \mathfrak{p}))$$
 (2.10)

is surjective

Proof

 $\beta \in \mathcal{O}_F / \mathfrak{q}$ with $\mathcal{O}_F / \mathfrak{q} = \mathcal{O}_K / \mathfrak{p}[\beta]$ (e.g. a generator for $(\mathcal{O}_F / \mathfrak{q})^{\times}$) Let $f(x) \in \mathcal{O}_K / \mathfrak{p}[X]$ be its minimal polynomial and $\beta = \beta_1, \beta_2, \dots, \beta_n \in \mathcal{O}_F / \mathfrak{q}$ its roots Sufficient to proof: $\exists g \in \operatorname{Gal}(F/K)$ with $g(\mathfrak{q}) = \mathfrak{q}$ and $g(\beta) = \beta_2$

Pick $\alpha \in \mathcal{O}_F$ with $\alpha \mod \mathfrak{q} = \beta, \alpha \mod \mathfrak{q}' = 0$ for all other prime \mathfrak{q}' above \mathfrak{p} (this is okay by CRT) Let $\mathcal{F}(X) \in \mathcal{O}_K[X]$ be its minimal polynomial over Kand $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_r \in \mathcal{O}_K$ be its roots (note F/K normal \Rightarrow all roots are in F)

 $\mathcal{F}(X) \mod \mathfrak{p} \text{ has } \beta \text{ as a root} \\ \Rightarrow \mathcal{F}(X) \mod \mathfrak{p} \text{ is divisible by } f(X) \\ \Rightarrow \mathcal{F}(X) \mod \mathfrak{p} \text{ has } \beta_2 \text{ as a root}$

WLOG $\alpha_2 \mod \mathfrak{q} = \beta_2$ Now take $g \in \operatorname{Gal}(F/K)$ s.t. $g(\alpha) = \alpha_2$ Then $g(\alpha) \neq 0 \mod \mathfrak{q} \Rightarrow g(\mathfrak{q}) = \mathfrak{q}$ and $g(\beta) = \beta_2$

Corollary 2.7

K number fields, F/K splitting field of monic irreducible $f(X) \in \mathcal{O}_K[X]$ Let \mathfrak{p} be a prime of K and assume

$$f(X) \mod \mathfrak{p} = g_1(X)g_2(X)\cdots g_k(X) \tag{2.11}$$

with $g_i(X) \in \mathcal{O}_K / \mathfrak{p}[X]$ distinct irreducible, with degree deg $g_i = d_i$ Then $\operatorname{Gal}(F/K) \leq S_n$ $(n = \deg f)$ has an element of cycle type (d_1, d_2, \ldots, d_k)

Proof

Let \mathfrak{q} be a prime above \mathfrak{p} and let $\alpha_1, \ldots, \alpha_n \in F$ be the roots of f. $f(\alpha_i \mod \mathfrak{q}) \mod \mathfrak{p} = 0 \quad \forall i \qquad \text{and} \qquad \alpha_i \mod \mathfrak{p} \text{ distinct (since } g_i \text{ distinct})$ $\Rightarrow \quad \text{action of } D_{\mathfrak{q}/\mathfrak{p}} \text{ on } \alpha_1, \ldots, \alpha_n = \text{action on the roots of } f \mod \mathfrak{p}$ Now take g which maps to the generator $\operatorname{Gal}((\mathcal{O}_F/\mathfrak{q})/(\mathcal{O}_K/\mathfrak{p}))$ $\Rightarrow \quad g$ has the correct cycle type on the α_i

Definition 2.8

F/K Galois, \mathfrak{q} a prime above \mathfrak{p}

The inertia subgroup (at \mathfrak{q}), denote $I_{\mathfrak{q}} = I_{\mathfrak{q}/\mathfrak{p}}$ is the (normal) subgroup of $D_{\mathfrak{q}}$ that acts trivially on $\mathcal{O}_F/\overline{\mathfrak{q}}$, i.e.

$$I_{\mathfrak{q}} = \ker \left(D_{\mathfrak{q}} \twoheadrightarrow \operatorname{Gal}((\mathcal{O}_F / \mathfrak{q}) / (\mathcal{O}_K / \mathfrak{p})) \right)$$
(2.12)

 $D_{\mathfrak{q}} \twoheadrightarrow \operatorname{Gal}((\mathcal{O}_F/\mathfrak{q})/(\mathcal{O}_K/\mathfrak{p}))$ surjective $\Rightarrow D_{\mathfrak{q}}/I_{\mathfrak{q}} \cong \operatorname{Gal}((\mathcal{O}_F/\mathfrak{q})/(\mathcal{O}_K/\mathfrak{p}))$

We also have

$$\operatorname{Gal}((\mathcal{O}_F / \mathfrak{q}) / (\mathcal{O}_K / \mathfrak{p})) \cong \mathbb{Z} / m \mathbb{Z} \cong \langle \phi \rangle$$
(2.13)

where ϕ is the Frobenius map $\phi(x) = x^{N(\mathfrak{p})}$ and m =order of $N(\mathfrak{p})$ in $\mathcal{O}_K / \mathfrak{p}$ The (arithmetic) <u>Frobenius element</u> is $\operatorname{Frob}_{\mathfrak{q}/\mathfrak{p}} \in D_{\mathfrak{q}}/I_{\mathfrak{q}}$ s.t. $\operatorname{Frob}_{\mathfrak{q}/\mathfrak{p}} \mapsto \phi$ under the induced map

<u>Note</u>: In Corollary 2.7, $I_{\mathfrak{q}/\mathfrak{p}}$ is trivial and $\operatorname{Frob}_{\mathfrak{q}/\mathfrak{p}}$ acts as the element of S_n of cycle type (d_1, \ldots, d_n)

Theorem 2.9

F/K Galois extension of number field, \mathfrak{q} a prime of F above \mathfrak{p} a prime of K. Then

- (i) $|D_{\mathfrak{q}/\mathfrak{p}}| = e_{\mathfrak{q}/\mathfrak{p}} f_{\mathfrak{q}/\mathfrak{p}}$
- (ii) The order of $\operatorname{Frob}_{\mathfrak{q}/\mathfrak{p}} = f_{\mathfrak{q}/\mathfrak{p}}$

(iii)
$$|I_{\mathfrak{q}/\mathfrak{p}}| = e_{\mathfrak{q}/\mathfrak{p}}$$

If L an intermediate field, $\mathfrak s$ a prime of L below $\mathfrak q,$ then

- (i) $D_{\mathfrak{q}/\mathfrak{s}} = D_{\mathfrak{q}/\mathfrak{p}} \cap \operatorname{Gal}(F/L)$
- (ii) $I_{\mathfrak{q}/\mathfrak{s}} = I_{\mathfrak{q}/\mathfrak{p}} \cap \operatorname{Gal}(F/L)$

\mathbf{Proof}

(i) If n =number of primes above \mathfrak{p} , then

$$\begin{aligned} n |D_{\mathfrak{q/p}}| &= |\operatorname{Gal}(F/K)| & \text{(by Orb-Stab and transitivity)} \\ &= [F:K] &= ne_{\mathfrak{q/p}}f_{\mathfrak{q/p}} & \text{(by Theorem 1.30 and Corollary 2.3)} \end{aligned}$$
 (2.14)

(ii)
$$f_{\mathfrak{q}/\mathfrak{p}} = [\mathcal{O}_F/\mathfrak{q}: \mathcal{O}_K/\mathfrak{p}] = |\operatorname{Gal}((\mathcal{O}_F/\mathfrak{q})/(\mathcal{O}_L/\mathfrak{p}))| = \text{order of Frob}_{\mathfrak{q}/\mathfrak{p}}$$

(iii)
$$|D_{\mathfrak{q}/\mathfrak{p}}| = |I_{\mathfrak{q}/\mathfrak{p}}| \cdot \text{order of Frob}_{\mathfrak{q}/\mathfrak{p}} \Rightarrow |I_{\mathfrak{q}/\mathfrak{p}}| = \frac{e_{\mathfrak{q}/\mathfrak{p}}f_{\mathfrak{q}/\mathfrak{p}}}{f_{\mathfrak{q}/\mathfrak{p}}}$$

The rests are straight forward from definition

Example:

 $\overline{K} = \mathbb{Q} \quad F = \mathbb{Q}(\zeta_n) \quad \zeta_n = \text{primitive } n \text{-th root of unity} \\
\text{Let } p \nmid n \text{ be a prime number, } \mathfrak{q} \text{ a prime of } F \text{ above } p \\
p \text{ is unramified} \quad \Rightarrow \quad I_{\mathfrak{q}/\mathfrak{p}} = \{\text{id}\} \text{ and } D_{\mathfrak{q}/\mathfrak{p}} = \langle \text{Frob}_{\mathfrak{q}/\mathfrak{p}} \rangle \\
\text{Frob}_{\mathfrak{q}/\mathfrak{p}} \text{ acts } x \mapsto x^p \text{ on } \mathcal{O}_F/\mathfrak{q} \\
\Rightarrow \quad \text{Frob}_{\mathfrak{q}/\mathfrak{p}}(\zeta_n) = \zeta_n^p \quad (\text{as } \zeta_n^i \text{ are distinct in } \mathcal{O}_F/\mathfrak{q}) \\
\text{In particular } f_{\mathfrak{q}/\mathfrak{p}} = \text{ order of } \text{Frob}_{\mathfrak{q}/\mathfrak{p}} = \text{order of } p \text{ in } (\mathbb{Z}/n\mathbb{Z})^{\times}$

2.3 Counting Primes

Lemma 2.10

F/K Galois extension of number fields

(i) primes of K are in bijection with $\operatorname{Gal}(F/K)$ -orbits of primes of F via

$$\mathfrak{p} \longleftrightarrow \{ \text{primes above } \mathfrak{p} \text{ in } F \}$$

(ii) If \mathfrak{q} is a prime of F above \mathfrak{p} , then

$$D_{\mathfrak{q}} \mapsto g(\mathfrak{q})$$
 (2.16)

is a $\operatorname{Gal}(F/K)$ -set isomorphism from {primes above \mathfrak{p} } to $G/D_{\mathfrak{q}}$

(iii) $D_{g(\mathfrak{q})} = g D_{\mathfrak{q}} g^{-1}$ and $I_{g(\mathfrak{q})} = g I_{\mathfrak{q}} g^{-1}$

q

Proof

(1) follows from transitivity of $\operatorname{Gal}(F/K)$ of primes above \mathfrak{p} (2),(3) is just elementary check

Corollary 2.11

F/K Galois, $L = K(\alpha)$ intermediate field. Then

$$\left\{\begin{array}{c} \text{primes of } L\\ \text{above } \mathfrak{p} \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} Gal(F/L)\text{-orbits on}\\ \text{primes of } F \text{ above } \mathfrak{p} \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} H - D_{\mathfrak{q}} \text{ double cosets}\\ (H \backslash G/D_{\mathfrak{q}}) \end{array}\right\}$$
(2.17)

$$\mathfrak{s} \longrightarrow \left(\begin{array}{c} \text{elements of } G \text{ that send} \\ \mathfrak{q} \text{ to a prime above } \mathfrak{s} \end{array} \right) (2.18)$$

<u>Note</u>:

$$\{H - D \text{ double cosets}\} = H \text{-orbits on } G/D$$

$$= D \text{-orbits on } H \setminus G \qquad (D \text{ acts by } d(Hg) = Hgd^{-1})$$

$$(2.19)$$

$$(2.20)$$

Interpretation of the latter set:

H=Stabiliser of α in the action of G on the root of the minimal polynomial of α i.e. we want the D_{q} -orbits on the embeddings $L \hookrightarrow F$

Proposition 2.12

F/K Galois extension of number fields. $L = K(\alpha)$ an intermediate field, G = Gal(F/K), H = Gal(F/L). Let \mathfrak{p} be a prime of K, \mathfrak{q} above p a prime at F Consider the G-set (of size [L:K])

$$X = H \setminus G \cong \{ \text{embeddings} L \hookrightarrow F \} \cong \{ \text{ roots of minimal polynomial of } \alpha \}$$
(2.21)

Then

$$\{\text{primes of } L \text{ above } \mathfrak{p}\} \stackrel{1-1}{\longleftrightarrow} D_{\mathfrak{q/p}}\text{-orbits on } X \quad \text{with} \quad (2.22)$$

$$e_{\mathfrak{s}/\mathfrak{p}}f_{\mathfrak{s}/\mathfrak{p}} = \text{size of the } D_{\mathfrak{q}}\text{-orbits}$$
 (2.23)

$$e_{\mathfrak{s}/\mathfrak{p}} = \text{size of any } I_{\mathfrak{q}} \text{-suborbit}$$
 (2.24)

$$f_{\mathfrak{s}/\mathfrak{p}} = \text{number of } I_{\mathfrak{q}} \text{suborbits}$$
 (2.25)

Explicitly

$$\mathfrak{s} \mapsto \text{Orbit of } g^{-1}(\alpha) \qquad \text{where } g(\mathfrak{q}) \text{ lies above } \mathfrak{s}$$
 (2.26)

Proof

One-to-one correspondence:

This is the correspondence constructed in Corollary 2.11 and the note. Now,

size of
$$D_{\mathfrak{q}}$$
-orbits of $g^{-1}(\alpha) = \frac{|D_{\mathfrak{q}}|}{|\operatorname{Stab}_{D_{\mathfrak{q}}}g^{-1}(\alpha)|} = \frac{|D_{\mathfrak{q}}|}{|\operatorname{Stab}_{gD_{\mathfrak{q}}}g^{-1}(\alpha)|}$ (2.27)

$$= \frac{|D_{\mathfrak{q}}|}{|gD_{\mathfrak{q}}g^{-1} \cap H|} = \frac{|D_{\mathfrak{q}}|}{|D_{g(\mathfrak{q})/\mathfrak{s}}|}$$
(2.28)

$$= \frac{e_{\mathfrak{q}/\mathfrak{p}}f_{\mathfrak{q}/\mathfrak{p}}}{e_{g(\mathfrak{q})/\mathfrak{s}}f_{g(\mathfrak{q})/\mathfrak{s}}} = \frac{e_{g(\mathfrak{q})/\mathfrak{p}}f_{g(\mathfrak{q})/\mathfrak{p}}}{e_{g(\mathfrak{q})/\mathfrak{s}}f_{g(\mathfrak{q})/\mathfrak{s}}} = e_{\mathfrak{s}/\mathfrak{p}}f_{\mathfrak{s}/\mathfrak{p}}$$
(2.29)

Similarly,

size of
$$I_{\mathfrak{q}}$$
-orbits = $e_{\mathfrak{s}/\mathfrak{p}}$ (note independent of the suborbit) (2.30)

$$\Rightarrow \quad \text{number of } I_{\mathfrak{q}}\text{-suborbits} = \frac{f_{\mathfrak{s}/\mathfrak{p}}e_{\mathfrak{s}/\mathfrak{p}}}{e_{\mathfrak{s}/\mathfrak{p}}} = f_{\mathfrak{s}/\mathfrak{p}}$$
(2.31)

Example:

 $K = \mathbb{Q}$ $F = \mathbb{Q}(\zeta_5, \sqrt[5]{2})$ p = 73Fix $\mathfrak{r}, \mathfrak{q}$ primes above 73 in $\mathbb{Q}(\zeta_5)$ and F, respectively

- 73 is a generator of $(\mathbb{Z}/5\mathbb{Z})^{\times} \Rightarrow \mathfrak{r}$ has residue degree 4
- \mathfrak{q}/p is unramified: otherwise $5|e_{\mathfrak{q}/73}$ which cannot happen as there is no ramification in $\mathbb{Q}(\sqrt[5]{2})/\mathbb{Q}$ (because $X^5 2$ has distinct roots mod 73)
 - $\Rightarrow e_{\mathfrak{q}/73} = 1 \quad f_{\mathfrak{q}/73} = 4 \text{ or } 20$
 - $\Rightarrow I_{\mathfrak{q}} = \{1\} \quad D_{\mathfrak{q}} \cong C_4 \text{ or } C_{20}, \text{ but } C_{20} \text{ is not a subgroup of } \operatorname{Gal}(F/\mathbb{Q})$
 - $\Rightarrow D_{\mathfrak{g}} \cong C_4$

Take $L = \mathbb{Q}(\sqrt[5]{2})$, $\operatorname{Gal}(F/\mathbb{Q})$ acts on $\sqrt[5]{2}, \zeta \sqrt[5]{2}, \zeta^3 \sqrt[5]{2}$ WLOG $D_{\mathfrak{q}}$ fixes $\sqrt[5]{2}$ and cyclicly permutes the rest

 \Rightarrow 2 primes in L above 73; residue degree 1, 4; ramification degrees 1,1

2.4 Representations of the Decomposition Group

Convention for this section:

F/K Galois extension of number fields, $\mathfrak p$ a prime of $K, \mathfrak q$ lies above $\mathfrak p$

Write $D = D_{\mathfrak{q}/\mathfrak{p}}, I = I_{\mathfrak{q}/\mathfrak{p}}, \text{Frob} = \text{Frob}_{\mathfrak{q}/\mathfrak{p}}$

Notation:

If V is a representation of D, write V^I for the subspace of I-invariant vectors. As $I \leq D$, this is a subrepresentation (Exercise: Check this)

Lemma 2.13

If V is an irreducible representation of D, then

either $V^I = 0$ or V is 1 dimensional, lifted from D/I (i.e. $D \to D/I \to \mathbb{C}$) (These kills I, and are determined by image of Frob)

Proof

 V^{I} subrepresentation $\Rightarrow V^{I} = 0$ or $V^{I} = V$

If $V^I = V$, then the action of D factors through D/I. The latter is abelian (cyclic) $\Rightarrow V$ is 1 dimensional

Remark. So representations of D look like $V = A \oplus B$ with $A^I = 0$, $B = V^I = \bigoplus (1\text{-dimensional representations of } D/I)$

 $\underline{Notation}$:

For V a D-representation, write

$$\Phi_{\mathfrak{q}/\mathfrak{p}}(V,t) = \det_{VI}(t\mathrm{Id} - \mathrm{Frob}) \tag{2.32}$$

= char polynomial of $\operatorname{Frob}_{\mathfrak{q}/\mathfrak{p}}$ on V^I (2.33)

Lemma 2.14

Let $\Psi: D \to D/I = \langle \text{Frob} \rangle \to \mathbb{C}^{\times}$ be a 1-dimensional representation of D, say $\Psi(\text{Frob}) = \zeta$ Then for a D-representation V

$$\langle \Psi, V \rangle = \langle \Psi, V^I \rangle = \text{multiplicity of } (t - \zeta) \text{ in } \Phi_{\mathfrak{q}/\mathfrak{p}}(t)$$
 (2.34)

Proof

First equality is by definition Second equality is clear from previous remark. Example of this equality is $\Phi(\Psi, t) = t - \zeta$

Remark. This Φ simply encodes the multiplicities of the 1-dimensional representation of D/I in a representation of D

Proposition 2.15

 $K \subseteq L \subseteq F$ intermediate field V a representation of $H = \operatorname{Gal}(F/L)$, then

$$\Phi_{\mathfrak{q/p}}\left(\operatorname{Res}_{D}^{G}\operatorname{Ind}_{H}^{G}V,t\right) = \prod_{\mathfrak{s}} \Phi_{\mathfrak{q/s}}\left(\operatorname{Res}_{D_{\mathfrak{p}_{i}/\mathfrak{s}}}^{H}V,t^{f_{\mathfrak{s/p}}}\right)$$
(2.35)

where \mathfrak{s} runs over the primes of L above \mathfrak{p} , and \mathfrak{q}_i lies above \mathfrak{s} (a prime of F)

Proof

Will show that LHS and RHS have the same roots with same multiplicities. Note that the roots are $f_{\mathfrak{q/p}}$ -th roots of unity

Let S be such a root, and set $\Psi: D \to D/I \to \mathbb{C}^{\times}$ with $\Psi(\text{Frob}) = \zeta$, then

multiplicity of

$$t - \zeta$$
 in LHS = $\langle \Psi, \operatorname{Res}_D^G \operatorname{Ind}_H^G V \rangle$ by Lemma 2.14 (2.36)

$$= \sum_{x \in H \setminus G/D} \langle \Psi, \operatorname{Ind}_{x^{-1}Hx \cap D}^{D} \operatorname{Res}_{x^{-1}Hx \cap D}^{x^{-1}Hx} V^{x} \rangle$$
(2.37)

$$= \sum_{\mathfrak{s}} \langle \Psi^{x^{-1}}, \operatorname{Ind}_{D_{\mathfrak{q}_i/\mathfrak{s}}}^{D_{\mathfrak{q}_i/\mathfrak{s}}} \operatorname{Res}_{D_{\mathfrak{q}_i/\mathfrak{s}}}^H V \rangle \qquad \text{by Lemma 2.10(3)}$$
(2.38)

$$= \sum_{\mathfrak{s}} \langle \operatorname{Res}_{D_{\mathfrak{q}_i/\mathfrak{s}}} \Psi^{x^{-1}}, \operatorname{Res}_{D_{\mathfrak{q}_i/\mathfrak{s}}} V \rangle \qquad \text{by Frobenius Reciprocity} \quad (2.39)$$

$$= \sum_{\mathfrak{s}} \text{multiplicity of } \left(t - \zeta^{f_{\mathfrak{s}/\mathfrak{p}}}\right) \quad \text{in } \Phi_{\mathfrak{q}_i/\mathfrak{s}}\left(\operatorname{Res}^H_{D_{\mathfrak{q}_i/\mathfrak{s}}}V, t\right)$$
(2.40)

$$= \sum_{\mathfrak{s}} \text{multiplicity of } (t - \zeta) \qquad \text{in } \Phi_{\mathfrak{q}_i/\mathfrak{s}} \left(\operatorname{Res}^H_{D_{\mathfrak{q}_i/\mathfrak{s}}} V, t^{f_{\mathfrak{s}/\mathfrak{p}}} \right) \quad (2.41)$$

Corollary 2.16 Take $\Psi_n: D \to D/I \to \mathbb{C}^{\times}$ which maps Frob to ζ a primitive *n*-th root of unity $(n|f_{\mathfrak{q}/\mathfrak{p}})$, then

number of primes
$$\mathfrak{s}$$
 of L
above \mathfrak{p} with $n|f_{\mathfrak{s}/\mathfrak{p}} = \langle \Psi_n, \operatorname{Res}_D \underbrace{\operatorname{Ind}_H^G}_{\mathbb{C}[G/H]} \mathbb{1} \rangle$ (2.42)

Proof

$$\langle \Psi_n, \operatorname{Res}_D \operatorname{Ind}_H^G \mathbb{1} \rangle = \operatorname{multiplicity}_{in \Phi_{\mathfrak{q}/\mathfrak{p}}}(\operatorname{Res} \operatorname{Ind} \mathbb{1}, t)$$
 by Lemma 2.14 (2.43)
$$= \prod \Phi_{\mathfrak{q}_i/\mathfrak{s}}\left(\mathbb{1}, t^{f_{\mathfrak{s}/\mathfrak{p}}}\right)$$
 by Proposition 2.15 (2.44)

$$= \underset{in}{\operatorname{multiplicity of } \zeta} (2.45)$$

$$= \underset{\text{with w} \neq f}{\inf f}$$
(2.46)

with
$$n|f_{\mathfrak{s/p}}$$

Exercise: Deduce Corollary 2.16 from Proposition 2.12

3 L-series

Aim/Motivation:

- (i) If (a, n) = 1, then \exists infinitely many primes $p \cong a \mod n$
- (ii) If $f(X) \in \mathbb{Z}[X]$, monic, and suppose that $f(X) \mod p$ has a root \forall prime $p \Rightarrow f(X)$ reducible

Definition 3.1

An (ordinary) <u>Dirichlet series</u> is a series

$$f(s) = \sum_{n=1}^{\infty} a_n n^{-s} \qquad (a_n \in \mathbb{C}, s \in \mathbb{C})$$

(Warning/Convention: The complex variable is $s = \sigma + it$, NOT z = x + iy)

3.1 Convergence Properties

Lemma 3.2 (Abel's Lemma)

$$\sum_{n=N}^{M} a_n b_n = \sum_{n=N}^{M-1} \left(\sum_{k=N}^{n} a_k \right) (b_n - b_{n+1}) + \left(\sum_{k=N}^{M} a_k \right) b_M$$
(3.1)

Proof

Elementary rearrangement

(c.f.
$$\int u dv = [uv] - \int v du$$
, $a \leftrightarrow dv, b \leftrightarrow du$)

Proposition 3.3

Let

$$f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s} \quad \text{for } \lambda_n \to \infty$$
(3.2)

increasing sequence of positive real numbers

- (i) If the partial sums $\sum_{n=N}^{M} a_n$ are bounded, then the series converges locally uniformly on $\operatorname{Re}(s) > 0$ to an analytic function
- (ii) If the series f(s) converges for $s = s_0$, then it converges locally uniformly on $\operatorname{Re}(s) > \operatorname{Re}(s_0)$ to an analytic function

<u>Note</u>: Dirichlet series are the case $\lambda_n = \log n$

\mathbf{Proof}

(i) \Rightarrow (ii): Change variables $s' = s - s_0$, $a'_n = a_n e^{-\lambda_n s_0}$ The new series converges at 0, so must have $\sum_N^M a'_n$ bounded. Invoke (i)

(ii): We show uniform convergence on $-A < \arg(s) < A$, $\operatorname{Re}(s) > \delta$ with $0 < A < \pi/2$. This will suffice as the uniform limit of analytic functions is analytic Let $\epsilon > 0$. Find N_0 s.t. for $n \ge N_0$ have $|e^{-\lambda_n s}| < \epsilon$ in this domain.

Now compute for $N, M \ge N_0$,

$$\left|\sum_{n=N}^{M} a_n e^{-\lambda_n s}\right| = \left|\sum_{n=N}^{M-1} \left(\sum_{k=N}^{n} a_k\right) \left(e^{-\lambda_n s} - e^{-\lambda_{n+1} s}\right) + \left(\sum_{N}^{M} a_k\right) e^{-\lambda_M s}\right|$$
(3.3)
(by Abel's Lemma 3.2)

$$\leq B \sum_{n=N}^{M-1} \left| e^{-\lambda_n s} - e^{-\lambda_{n+1} s} \right| + B\epsilon$$
(3.4)

where B is the bound on the partial sums $\sum a_k$ Observe that

$$\begin{aligned} \left| e^{-\alpha s} - e^{-\beta s} \right| &= \left| s \int_{\alpha}^{\beta} e^{-xs} dx \right| \\ &= \left| s \right| \int_{\alpha}^{\beta} e^{-x\sigma} dx \quad (\sigma = \operatorname{Re}(s)) \\ &= \frac{\left| s \right|}{\sigma} \left(e^{-\alpha \sigma} - e^{-\beta \sigma} \right) \end{aligned}$$
(3.5)

Therefore,

$$\left|\sum_{n=N}^{M} a_n e^{-\lambda_n s}\right| \leq B \frac{|s|}{\sigma} \sum_{n=N}^{M-1} \left(e^{-\lambda_n \sigma} - e^{-\lambda_{n+1}\sigma}\right) + B\epsilon$$
(3.6)

$$= B \frac{|s|}{\sigma} \left(e^{-\lambda_N \sigma} - e^{-\lambda_M \sigma} \right) + B\epsilon$$
(3.7)

$$\leq \epsilon \left(B \frac{|s|}{\sigma} + B \right) \leq \epsilon (Bk + B) \quad \text{where } \frac{|s|}{\sigma} \leq k \text{ in our domain}$$
 (3.8)

This is uniform convergence

Proposition 3.4 Let $f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}$ for $\lambda_n \to \infty$ increasing sequence of positive real numbers. Suppose

- (i) $0 \le a_n \in \mathbb{R}$
- (ii) f(s) converges on $\operatorname{Re}(s) > R \in \mathbb{R}$ (and hence analytic there)
- (iii) It has an analytic continuation to a neighbourhood of s = R

Then f(s) converges on $\operatorname{Re}(s) > R - \epsilon$ for some $\epsilon > 0$

Proof

Again, we may assume R = 0 f analytic on $\operatorname{Re}(s) > 0$ and on $|s| < \delta$ $\Rightarrow f$ analytic on $|s - 1| \le 1 + \epsilon$ The Taylor series of f around s = 1 converges on all of $|s - 1| \le 1 + \epsilon$. In particular

$$f(-\epsilon) = \sum_{k=0}^{\infty} \frac{1}{k!} (-1)^k (1+\epsilon)^k f^{(k)}(1) \qquad \text{converges}$$
(3.9)

For $\operatorname{Re}(s) > 0$

(-

$$f^{(k)}(s) = \sum_{n=1}^{\infty} a_n (-\lambda_n)^k e^{-\lambda_n s} \qquad \left(\begin{array}{c} \text{term-by-term differentiation okay} \\ \text{by locally uniform convergence} \end{array} \right) \qquad (3.10)$$

$$(3.10) + 1 \int_{n=1}^{\infty} a_n \lambda_n^k e^{-\lambda_n s} \qquad \text{a convergent series with positive terms} \qquad (3.11)$$

Observe:

$$f(-\epsilon) = \sum_{k=0}^{\infty} \frac{1}{k!} (1+\epsilon)^k \sum_{n=1}^{\infty} a_n \lambda_n^k e^{-\lambda_n s}$$
(3.12)

$$= \sum_{k,n} a_n \lambda_n^k e^{-\lambda_n s} \frac{1}{k!} (1+\epsilon)^k \quad \left(\begin{array}{c} \text{order does not matter} \\ \text{as all terms positive} \end{array} \right)$$
(3.13)

$$= \sum_{n=1}^{\infty} a_n e^{-\lambda_n} e^{\lambda_n (1+\epsilon)}$$
(3.14)

$$= \sum_{n=1}^{\infty} a_n e^{\lambda_n \epsilon}$$
 is a convergent series (3.15)

Therefore, series for f converges at $s = -\epsilon$, and hence, by Proposition 3.3, on $\operatorname{Re}(s) > -\epsilon$

Exercise:

Show that, if $\sum a_n e^{-\lambda_n s}$ and $\sum b_n e^{-\lambda_n s}$ converges on $\operatorname{Re}(s) > \sigma_0$ to the same function f(s), then $a_n = b_n \forall n$

Theorem 3.5

- (i) If a_n are bounded, then $\sum_{n=1}^{\infty} a_n n^{-s}$ converges absolutely on $\operatorname{Re}(s) > 1$ to an analytic function
- (ii) If partial sums $\sum_{n=N}^{M} a_n$ are bounded, then $\sum a_n n^{-s}$ converges on $\operatorname{Re}(s) > 0$ to an analytic function

Proof

- (i) $\sum \frac{1}{n^x}$ converges for x > 1 real. Analyticity from Proposition 3.3
- (ii) by Proposition 3.3

3.2 Dirichlet *L*-functions

Definition 3.6

Let $N \ge 1$ be an integer and

$$\psi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^t \, imes \tag{3.16}$$

a group homomorphism. Extend ψ to all of \mathbb{Z} by

$$\psi(n) = \begin{cases} \psi(n \mod N) & \text{if } (n, N) = 1\\ 0 & \text{otherwise} \end{cases}$$
(3.17)

Such a function is called <u>Dirichlet character modulo N</u> Its <u>*L*-series</u> (or <u>*L*-function</u>) is

$$L_N(\psi, s) = \sum_{n=1}^{\infty} \psi(n), n^{-s}$$
(3.18)

Remark. $\psi : (\mathbb{Z} / N \mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ is often called <u>Dirichlet character</u> <u>Warning</u>: Note that ψ is just a 1-dimensional representation. Number theorists often have the (bad) habit of referring to 1-dimensional representations as characters

Lemma 3.7

Let ψ be a Dirichlet character modulo N

- (i) $\psi(a+N) = \psi(a)$ (i.e. ψ periodic)
- (ii) $\psi(ab) = \psi(a)\psi(b)$ (ψ is strictly multiplicative)
- (iii) The *L*-series of ψ converges absolutely on $\operatorname{Re}(s) > 1$ and satisfies

$$L_N(\psi, s) = \prod_{p \text{ prime}} \frac{1}{1 - \psi(p)p^{-s}}$$
(3.19)

(This expression is called the Euler product for ψ)

Proof

- (i) Clear
- (ii) Clear
- (iii) Coefficients, $\psi(n)$, of the *L*-series are bounded, so absolute convergence follows from Theorem 3.5(i). For Re(s) > 1

$$\sum \psi(n)n^{-s} = \prod_{p \text{ prime}} \left(1 + \psi(p)p^{-s} + \psi(p)^2 p^{-2s} + \psi(p)^3 p^{-3s} + \cdots\right) \text{ by (ii) and absolute convergence}$$
$$= \prod_{p \text{ prime}} \frac{1}{1 - \psi(p)p^{-s}} \quad \text{Geometric series}$$
(3.21)

Take N = 10, so $(\mathbb{Z}/N\mathbb{Z})^{\times} = \{1, 3, 7, 9\} \cong C_4$ and take ψ with $\psi(1) = 1$, $\psi(3) = i$, $\psi(7) = -i$, $\psi(9) = -1$. Then

$$L_{10}(\psi, s) = 1 + \frac{i}{3^s} - \frac{i}{7^s} - \frac{1}{9^s} + \frac{1}{11^s} + \frac{1}{13^s} - \frac{1}{17^s} - \frac{1}{19^s} + \dots$$
(3.22)

Remark. The case $\psi : (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ with $\psi(n) = 1 \ \forall n \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ gives the <u>trivial</u> Dirichlet character modulo N. In this case

$$L_N(\psi, s) = \zeta(s) \prod_{\text{prime } p|N} \left(1 - p^{-s}\right)$$
(3.23)

($\zeta(s)$ =Riemann ζ -function, both sides are $\prod_{p \nmid N} 1/(1-p^{-s})$)

Theorem 3.8

Let $N \ge 1$ and $\psi : (\mathbb{Z} / N \mathbb{Z})^{\times} \to \mathbb{C}^{\times}$

- (i) If ψ is the trivial character, then $L_N(\psi, s)$ has analytic continuation to $\operatorname{Re}(s) > 0$ except for a simple pole at s = 1
- (ii) If ψ is non-trivial, then $L_N(\psi, s)$ is analytic on $\operatorname{Re}(s) > 0$

Proof

- (i) Follows from last remark and that $\zeta(s)$ has an analytic continuation to $\operatorname{Re}(s) > 0$ with a simple pole at s = 1 (c.f. Part II Number Theory)
- (ii)

$$\sum_{n=A}^{A+N+1} \psi(n) = \sum_{n \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \psi(n)$$
(3.24)

 $= \langle \psi, \mathbb{1} \rangle \quad (\text{representation of } (\mathbb{Z} / N \mathbb{Z})^{\times})$ (3.25)

$$= 0 \qquad \text{as } \psi \neq 1 \tag{3.26}$$

So the sums $\sum_{n=A}^{B} \psi(n)$ are bounded, and result follows from Theorem 3.5(ii)

Theorem 3.9

Let ψ be a non-trivial Dirichlet character modulo N. Then $L_N(\psi, 1) \neq 0$

Proof

Let

$$\zeta_N(s) = \prod_{\chi(\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}} L_N(\chi, s)$$
(3.27)

Suppose $L_N(psi, 1) = 0$. Then $\zeta_N(s)$ has an analytic continuation to $\operatorname{Re}(s) > 0$ by Theorem 3.8, the pole from $L_N(\mathbb{1}, s)$ having been killed by the zero of $L_N(\psi, s)$ On $\operatorname{Re}(s) > 1$, $\zeta_N(s)$ has the absolute convergence Euler product

$$\zeta_N(s) = \prod_{\chi} \prod_p \frac{1}{1 - \chi(p)p^{-s}} = \prod_p \prod_{\chi} \frac{1}{1 - \chi(p)p^{-s}}$$
(3.28)

Now,

$$\prod_{\chi} (1 - \chi(p)T) = \left(1 - T^{f_p}\right)^{\phi(N)/f_p}$$
(3.29)

where f_p =order of p modulo N, and ϕ is the Euler-totient function. Indeed, the $\chi(p)$ are f_p -th roots of unity, each occurring $\phi(N)/f_p$ times and $\prod_{i=0}^{f_p-1} \left(1-\zeta_{f_p}^i T\right) = 1-T^{f_p}$ So on $\operatorname{Re}(s) > 1$, $\zeta_n(s)$ has a Dirichlet series give by

$$\zeta_N(s) = \prod p \nmid N \left(1 + p^{-f_p s} + p^{-2f_p s} + \cdots \right)^{\phi(N)/f_p}$$
(3.30)

By Proposition 3.4, as $\zeta_N(s)$ is assumed analytic on $\operatorname{Re}(s) > 0$ and this series has positive coefficients, the series must converge on $\operatorname{Re}(s) > 0$. But (for s > 0 real) it dominates

$$\prod_{p \nmid N} \left(1 + p^{-f_p s} + p^{-2f_p s} + \cdots \right) = L_N(\mathbb{1}, \phi(N)s)$$
(3.31)

which diverges when $s \to 1/\phi(N)$ #

Want:

$$\sum_{p \cong a \mod N} p^{-s} \to \infty \quad \text{as} \quad s \to 1 \tag{3.32}$$

3.3 Primes in Arithmetic Progressiona

Proposition 3.10

Let ψ be Dirichlet character mod N

(i) The Dirichlet series $\sum_{\substack{p \text{ primes}, n \geq 1 \\ \text{function and defines (a branch of) } \log L_N(\psi, s)} \frac{\psi(p)^n}{n} p^{-ns}$ converges absolutely on $\operatorname{Re}(s) > 1$ to an analytic

(ii) If
$$\psi$$
 is non-trivial then $\sum_{p>n} \frac{\psi(p)^n}{n} p^{-ns}$ is bounded as $s \to 1$
If $\psi = 1$ then $\sum_{p>n} \frac{psi(p)^n}{n} p^{-ns} \sim \log \frac{1}{s-1}$ as $s \to 1$

Proof

(i) The series has bounded coefficients so converges absolutely on $\operatorname{Re}(s) > 1$ to an analytic function (Theorem 3.5(i)). Then

$$\sum_{p>n} \frac{psi(p)^n}{n} p^{-ns} = \sum_p \psi(p) p^{-s} = \frac{\psi(p)^2 p^{-2s}}{2} + \cdots$$
(3.33)

$$= \sum_{p} \log \frac{1}{1 - \psi(p)p^{-s}}$$
(3.34)

$$= \log \prod_{p} \frac{1}{1 - \psi(p)p^{-s}} \quad \text{continuity of log and} \\ \text{local uniform converges of } L_N(\psi, s) \quad (3.35)$$
$$= \log L_N(\psi, s) \quad (3.36)$$

Note, in equation 3.34, the branch we took is

$$\log(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$$
 for x small (3.37)

And at the end, it is possible that we will get a different branch of log

(ii) By Theorem 3.8 if ψ is non-trivial the $L_N(\psi, s)$ converges to a nonzero value as $s \to 1$, so its logarithm is bounded near s = 1

 $L_N(\psi, s)$ have a simple pole at $s = 1 \Rightarrow sim \frac{\lambda}{s-1}$

$$\log L_N(1,s) \sim \log \frac{1}{s-1} \quad \text{as } s \to 1 \tag{3.38}$$

Corollary 3.11

If ψ nontrivial then $\sum_{p \text{ prime}} \psi(p) p^{-s}$ is bounded as $s \to 1$. If $\psi = \mathbb{1}$ then $\sum_{p \text{ prime}} \psi(p) p^{-s} = \sum_{p \nmid N} p^{-s} \sim \log \frac{1}{s-1}$ as $s \to 1$

.

Proof

$$\sum_{p} \psi(p) p^{-s} = \log L_N(\psi, s) - \sum_{p,n \ge 2} \frac{\psi(p)^n}{n} p^{-ns}$$
(3.39)

So sufficient to prove that, the last term is bounded on $\operatorname{Re}(s) > 1$. But there

$$\left|\sum_{p,n\geq 2} \frac{\psi(p)^n}{n} p^{-ns}\right| \leq \sum_{p,n\geq 2} \frac{1}{|p^s|^n}$$
(3.40)

$$= \sum_{p} \frac{1}{|p^{s}|^{2}(|p^{s}|-1)} \quad \text{Geometric series}$$
(3.41)

$$\leq \sum_{p} \frac{1}{p(p-1)} \quad \operatorname{Re}(s) > 1$$
 (3.42)

$$\leq \sum_{n} \frac{1}{n^2} < \infty \tag{3.43}$$

Theorem 3.12 (Dirichlet's Theorem on Primes in Arithmetic Progressions)

Let a, N be coprime integers. Then there are infinitely many primes p with $p \cong a \mod N$ Moreover, if P_a is the set of these primes, then

$$\sum_{p \in P_a} \frac{1}{p^s} \sim \frac{1}{\phi(N)} \log \frac{1}{s-1} \quad \text{as } s \to 1$$
(3.44)

Proof

Second statement ; \Rightarrow First statement. So we will prove the second statement.

Consider the (class) function

$$C_a : (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}$$
(3.45)

$$C_a(n) = \begin{cases} 1 & \text{if } n \cong a \\ 0 & \text{otherwise} \end{cases}$$
(3.46)

Then

$$\langle C_a, \chi \rangle = \frac{1}{\phi(N)} \sum_{n \in (\mathbb{Z}/n\mathbb{Z})^{\times}} C_a(n) \overline{chi}(n) = \frac{1}{\phi(N)} \overline{\chi(a)}$$
(3.47)

$$\Rightarrow \qquad C_a = \sum_{\chi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times}} \frac{\chi(a)}{\phi(N)} \chi \tag{3.48}$$

Hence

$$\sum_{p \in P_a} \frac{1}{p^s} = \sum_{p \text{ prime}} C_a(p) p^{-s} = \sum_{\chi} \left(\frac{\overline{\chi(a)}}{\phi(N)} \sum_p \frac{\chi(p)}{p^s} \right)$$
(3.49)

Each term on RHS is bounded as $s \to 1$ except $\chi = 1$ (by Corollary 3.11) and

$$\frac{\mathbb{1}(a)}{\phi(N)} \sum_{p} \frac{\mathbb{1}(p)}{p^{s}} = \frac{1}{\phi(N)} \sum_{p} \frac{1}{p^{s}} \sim \frac{1}{\phi(N)} \log \frac{1}{s-1}$$
(3.50)

as $s \to 1$

Summary:

$$\sum_{\substack{p \cong a \mod N}} p^{-s} = \underset{\text{with } \frac{1}{\phi(N)} \text{ copies of } \mathbb{1}}{\text{linear combination of } \sum_{p} \chi(p) p^{-s}}$$
(3.51)

each
$$\sum \chi(p)p^{-s} = \approx \log L_N(\chi, s)$$
 (3.52)

and these are bounded for $\chi \neq \mathbb{1}$ $(L_N(\chi, 1) \neq 0, \infty)$ and $\sim \log 1s - 1$ for $\chi = \mathbb{1}$

3.4 Dirichlet Characters, Alternative view

We want to pass Dirichlet from \mathbb{Z}, \mathbb{Q} to \mathcal{O}_K, K and look at mod I (correspond to APs)

<u>Note</u>:

$$(\mathbb{Z}/N\mathbb{Z})^{\times} \xrightarrow{\sim} \operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$$
 (3.53)

$$a \mapsto \sigma_a \quad \text{with } \sigma_a(\zeta_N) = \zeta_N^a$$
 (3.54)

$$p \mapsto \sigma_p \quad \text{with } \sigma_p(\zeta_N) = \zeta_N^p$$
 (3.55)

If $\mathfrak{q} \subseteq \mathbb{Q}(\zeta_N)$ above $p \nmid N$, then $\sigma_p = \operatorname{Frob}_{\mathfrak{q}/p}$

$$\Rightarrow \qquad \frac{1}{1 - \psi(p)p^{-s}} \longleftrightarrow \frac{1}{1 - \psi(\operatorname{Frob}_p)p^{-s}} \tag{3.56}$$

 $(\operatorname{Frob}_p = \operatorname{Frob}_{\mathfrak{q}/p} \text{ and } \mathfrak{q}|p)$

Theorem 3.13 (Hecke, 1920, Class Field Theory related)

Let F/K be a Galois extension of number fields with $\operatorname{Gal}(F/K)$ abelian, and $\psi : \operatorname{Gal}(F/K) \to \mathbb{C}^{\times}$ a homomorphism. Then

$$L_*(\psi, s) = \prod_{\substack{\mathfrak{p} \text{ prime in } K \\ \text{unram. in } F/K}} \frac{1}{1 - \psi(\operatorname{Frob}_{\mathfrak{p}})N(\mathfrak{p})^{-s}}$$
(3.57)

has an analytic continuation to \mathbb{C} , except for a simple pole at s = 1 when $\psi = \mathbb{1}$ (Note: \mathfrak{p} unramified \Rightarrow Inertia group=1, and

 $\operatorname{Frob}_{\mathfrak{g}} = \operatorname{Frob}_{\mathfrak{q}/\mathfrak{p}}$ independent of \mathfrak{q} as $\operatorname{Gal}(F/K)$ is abelian)

Proof

Beyond syllabus

Remark. When $K = \mathbb{Q}$, $F = \mathbb{Q}(\zeta_N)$, this recovers Theorem 3.8

3.5 Artin *L*-functions

<u>AIM</u>: Prove f(X) has a root mod all prime $\Rightarrow f(X)$ reducible Recall (Notation):

For $I \leq D$ finite groups and ρ a *D*-representation

- $\rho^{I} = I$ -invariant vectors of $\rho = \{v \in \rho | gv = v \; \forall g \in I\}$
- If $I \triangleleft D$ then ρ^{I} is a subrepresentation $(v \in \rho^{I}, g \in D, i \in I)$ $\Rightarrow i(gv) = g(i'v) = gv \text{ (for some } i' \in I)$ $\Rightarrow gv \in \rho^{I}$
- If $\lambda \in \mathbb{C}, g_i \in D$, write $\det(\sum \lambda_i g_i | \rho)$ for $\det_{\rho}(\sum \lambda_i g_i)$ equivalent viewing ρ as $\rho : D \to GL_n(\mathbb{C})$ $\det(\lambda_i g_i | \rho) = \det(\sum \lambda_i \rho(g_i))$ e.g. charactieristic polynomial of $g \in D$ is $\det(t - g|\rho)$

Definition 3.14

Let F/K be Galois extension of number fields and ρ a $\operatorname{Gal}(F/K)$ -representation. Let \mathfrak{p} be a prime in K. Choose a prime in F above \mathfrak{p} and an element $\operatorname{Frob}_{\mathfrak{p}} \in D_{\mathfrak{q}}/\mathfrak{p}$ which maps to $\operatorname{Frob}_{\mathfrak{q}}/\mathfrak{p} \in D_{\mathfrak{q}}/I_{\mathfrak{q}}$, i.e. that acts as Frobenius on the residue field at \mathfrak{q} Then the local polynomial of ρ at \mathfrak{p} is

$$P_{\mathfrak{p}}(F/K,\rho,T) = P_{\mathfrak{p}}(\rho,T) = \det(1 - \operatorname{Frob}_{\mathfrak{p}} T | \rho^{I_{\mathfrak{p}}})$$
(3.58)

where $I_{\mathfrak{p}} = I_{\mathfrak{q}/\mathfrak{p}}$

Remark. This is essentially the characteristic polynomial of $\operatorname{Frob}_{\mathfrak{p}}$ on ρ , $\Phi_{\mathfrak{q/p}}(\rho, T)$ If $P_{\mathfrak{p}}(\rho, T) = 1 + a_1T + a_2T^2 + \cdots + a_nT^n$ then $\Phi_{\mathfrak{q/p}}(\rho, T) = T^n + a_1T^{n-1} + a_2T^{n-2} + \cdots + a_n$

Lemma 3.15

 $P_{\mathfrak{p}}(\rho,T)$ independent of the choice of \mathfrak{q} and of the choice of $\operatorname{Frob}_{\mathfrak{p}}$

Proof

For fixed \mathfrak{q} , independence of choice of $\operatorname{Frob}_{\mathfrak{p}}$ is clear.

Two choices differ by some $i \in I$ which acts as identity on ρ^{I}

If \mathfrak{q}' is a different prime over \mathfrak{p} , write $\mathfrak{q}' = g(\mathfrak{q})$ for some $g \in \operatorname{Gal}(F/K)$ and observe $\operatorname{Frob}_{\mathfrak{p}} = g \operatorname{Frob}_{\mathfrak{p}} g^{-1}$ is a lift of Frobenius for $\mathfrak{q}' / \mathfrak{p}$.

The equivalence of $\operatorname{Frob}'_{\mathfrak{p}}$ on $\rho^{I_{\mathfrak{q}'/\mathfrak{p}}} = \rho^{gI_{\mathfrak{p}}g^{-1}}$ are the same as of $\operatorname{Frob}_{\mathfrak{p}}$ on $\rho^{I_{\mathfrak{p}}}$

Hence, their characteristic polynomials agree P(-T)

 $\Rightarrow P_{\mathfrak{p}}(\rho, T)$ is independent of choice of \mathfrak{q}

Definition 3.16

Let F/K be a Galois extension of number fields. ρ a representation of Gal(F/K)The Artin *L*-function of ρ is defined by the Euler product

$$L(F/K,\rho,s) = L(\rho,s) = \prod_{\mathfrak{p} \text{ prime of } K} \frac{1}{P_{\mathfrak{p}}(\rho, N(\mathfrak{p})^{-s})}$$
(3.59)

The polynomial $P_{\mathfrak{p}}(\rho, T)$ has the form $1 - (aT + bT^2 + \cdots)$ so we can write (ignoring convergence)

$$\frac{1}{P_{\mathfrak{p}}(\rho,T)} - 1 + (aT + bT^2 + \dots) + (aT + bT^2 + \dots)^2 + \dots$$
(3.60)

Formally substituting this into the Euler product gives the expression (<u>Artin L-series</u>)

$$L(\rho, s) = \sum_{\substack{\mathfrak{n} \text{ non-zero} \\ \text{ideal in } \mathcal{O}_K}} a_{\mathfrak{n}} N(\mathfrak{n})^{-s} = \left[\prod_{\mathfrak{p}} (1 + a_{\mathfrak{p}} N(\mathfrak{p})^{-s} + a_{\mathfrak{p}^2} N(\mathfrak{p})^{-2s} + \cdots) \right]$$
(3.61)

for some $a_{\mathfrak{n}} \in \mathbb{C}$

Note that the grouping ideal with equal norm yields an expression for $L(\rho, s)$ as an ordinary Dirichlet series

-

Lemma 3.17

The L-series expression for $L(\rho, s)$ agrees with the Euler product on $\operatorname{Re}(s) > 1$ where they converge absolutely to an analytic function

Proof

It suffices to prove that

$$\prod_{\mathfrak{p} \text{ prime of } \mathcal{O}_K} (1 + a_\mathfrak{p} N(\mathfrak{p})^{-s} + a_{\mathfrak{p}^2} N(\mathfrak{p})^{-2s} + \cdots)$$
(3.62)

converges absolutely on $\operatorname{Re}(s) > 1$, this justifies rearrangement of terms and the Dirichlet series expression for $L(\rho, s)$ then proves analyticity (Proposition 3.3) The polynomial $P_{\mathfrak{p}}(\rho, T)$ factorises over \mathbb{C} as

$$P_{\mathfrak{p}}(\rho, T) = (1 - \lambda_1 T)(1 - \lambda_2 T) \cdots (1 - \lambda_k T)$$
(3.63)

for some $k \leq \dim \rho$ and $|\lambda_i| = 1$ So the coefficients of

$$\frac{1}{P_{\mathfrak{p}}(\rho,T)} = \frac{1}{\prod(1-\lambda_i T)} = 1 + a_{\mathfrak{p}}T + a_{\mathfrak{p}^2}T^2 + \cdots$$
(3.64)

are bounded in absolute value by those of $\frac{1}{(1-T)^{\dim \rho}} = (1+T+T^2+\cdots)^{\dim \rho}$ Hence,

$$\prod_{\mathfrak{p}} \sum_{n} |a_{\mathfrak{p}^{n}}| |N(\mathfrak{p})^{-ns}| \leq \prod_{\mathfrak{p}} \frac{1}{(1 - |N(\mathfrak{p})^{-s}|)^{\dim \rho}}$$
(3.65)

$$\leq \prod_{\mathfrak{p}} \frac{1}{(1-|p^{-s}|)^{\dim \rho}} \quad (p \text{ a rational prime below } \mathfrak{p}) \tag{3.66}$$

$$\leq \prod_{p \text{ prime}} \left(\frac{1}{1-|p^{-s}|}\right)^{\dim \rho[K:\mathbb{Q}]} \tag{3.67}$$

$$= \zeta(\sigma)^{\dim \rho[K:\mathbb{Q}]} \quad \text{where } \sigma = \operatorname{Re}(s)$$
(3.68)

$$< \infty$$
 (3.69)

Example:

(i) $K = \mathbb{Q}$ F arbitrary $\rho = \mathbb{1}$ For a prime $p, \rho^{I_{\mathfrak{p}}} = \rho$ and $\operatorname{Frob}_{\mathfrak{p}}$ acts as identity so $P_{\mathfrak{p}}(\rho, T) = 1 - T$

$$\Rightarrow \qquad L(F/\mathbb{Q}, \mathbb{1}, s) = \prod_{p} \frac{1}{1 - p^{-s}} = \zeta(s) \tag{3.70}$$

(Note that this does not depends on F, and all factors are in place)

(ii) K, F are arbitrary, $\rho = 1$

$$L(F/K, \mathbb{1}, s) = \prod_{\mathfrak{p}} \frac{1}{1 - N(\mathfrak{p})^{-s}} = \zeta_K(s)$$
(3.71)

This is the Dedekind ζ -function of K

(iii) $K = \mathbb{Q}, F = \mathbb{Q}(\zeta_N), \rho$ 1-dimensional representation of $\operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \cong (\mathbb{Z}/N\mathbb{Z})^{\times}$ Set

$$\psi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$$
(3.72)

$$\psi(n) = \rho(\sigma_n) \quad \text{where } \sigma_n(\zeta_N) = \zeta_N^n \quad (3.73)$$

$$\Rightarrow \qquad L(\rho, s) = \prod_{p:\rho(I_p)=1} \frac{1}{1 - \rho(\operatorname{Frob}_p)p^{-s}} \tag{3.74}$$

$$= \prod_{p:\rho(I_p)=1} \frac{1}{1-\psi(p)p^{-s}}$$
(3.75)

$$= L_N(\psi, s) \prod_{p \mid N, \rho(I_p) = 1} \frac{1}{1 - \rho(\operatorname{Frob}_p) p^{-s}}$$
(3.76)

for example, if ρ is faithful then $L(\rho, s) = L_N(\psi, s)$

Proposition 3.18

F/K Galois extension of number fields, ρ a Gal(F/K)-representation

(i) If ρ' another Gal(F/K)-representation, then

$$L(\rho \oplus \rho', s) = L(\rho, s)L(\rho', s)$$
(3.77)

(ii) If $N \triangleleft \operatorname{Gal}(F/K)$ lies in ker ρ , so that ρ comes from a representation, ρ'' , of $\operatorname{Gal}(F/K)/N = \operatorname{Gal}(F^N/K)$, then

$$L(F/K, \rho, s) = L(F^{N}/K, \rho'', s)$$
(3.78)

(iii) (Artin Formalism) If $\rho = \operatorname{Ind}_{H}^{\operatorname{Gal}(F/K)} \rho'''$ for a representation ρ''' of $H \subseteq \operatorname{Gal}(F/K)$, then

$$L(F/K, \rho, s) = L(F/F^{H}, \rho^{\prime\prime\prime}, s)$$
(3.79)

Proof

It is sufficient to check each statement prime-by-prime for the local polynomials

- (i) Clear. (Note $(\rho \oplus \rho')^{I_p} = \rho^{I_p} \oplus \rho'^{I_p}$)
- (ii) Straight from the definitions (Note Frobenius for F/K projects to Frobenius for F^N/K and similarly for inertia)

(iii) We have already proved this in Proposition 2.15 (for characteristic polynomial Φ) and the remark under Definition 3.14 (to get local polynomials)

Theorem 3.19

(This theorem rephrase Theorem 3.13) F/K Galois extension of number fields, ρ a 1-dimensional representation of Gal(F/K)

Then $L(\rho, s)$ has analytic continuation of \mathbb{C} , except for a simple pole at s = 1 if $\rho = \mathbb{1}$

Proof

By Proposition 3.18(ii), we may assume that ρ is faithful

$$\Rightarrow \qquad \rho^{I_p} = \begin{cases} \rho & \mathfrak{p} \text{ unramified in } F/K \\ 0 & \mathfrak{p} \text{ ramified} \end{cases}$$
(3.80)

Then by Theorem 3.13:

$$L(\rho, s) = \prod_{\substack{\mathfrak{p} \text{ unram} \\ \text{ in } F/K}} \frac{1}{1 - \rho(\operatorname{Frob}_{\mathfrak{p}})N(\mathfrak{p})^{-s}}$$
(3.81)

Theorem 3.20 (Artin)

Let G be a finite group, ρ a G-representation.

There are cyclic subgroups $H_i, H'_j \leq G$ and 1-dimensional representations ψ_i, ψ'_j of H_i, H'_j respectively, s.t.

$$\rho^{\oplus n} \oplus \left(\bigoplus \operatorname{Ind}_{H_i}^G \psi_i\right) \cong \bigoplus_j \operatorname{Ind}_{H_j}^G \psi'_j \tag{3.82}$$

for some $n \ge 1$ Moreover, if $\langle \rho, 1 \rangle = 0$ then all ψ_i, ψ'_j can be taken to be non-trivial

(see handout for proof, non-examinable)

Corollary 3.21 (Artin)

F/K Galois extension of number fields, ρ a Gal(F/K)-representation. Then $\exists n \geq 1$ s.t. $L(\rho, s)^n$ admits a meromorphic continuation to \mathbb{C} (and analytic at s = 1 if $\langle \rho, 1 \rangle = 0$)

Proof

Combine Theorem 3.20 with Proposition 3.18 and Theorem 3.19:

Equation 3.82 gives

$$L(\rho, s)^{n} \prod L(\operatorname{Ind} \psi_{i}, s) = \prod L(\operatorname{Ind} \psi'_{j}, s)$$
(3.83)

$$\Rightarrow \qquad L(\rho, s)^n = \frac{\prod L(\operatorname{Ind} \psi'_j, s)}{\prod L(\operatorname{Ind} \psi_i, s)} \tag{3.84}$$

The numerator and denominator of the fraction are both analytic, thus $L(\rho, s)^n$ meromorphic \Box

Corollary 3.22

If ρ irreducible non-trivial, then $L(\rho, s)$ is analytic and non-zero at s = 1

Proof

Write R for the regular representation of $\operatorname{Gal}(F/K)$. Then

$$\zeta_F(s) = L(F/K, R, s) \qquad \text{Prop 3.18(iii)} \tag{3.85}$$

$$= \prod T \text{ irred.} L(F/K, T, s)^{\dim T}$$
(3.86)

$$= \zeta_K(s) \prod_{\text{irred } T \neq 1} L(F/K, T, s)^{\dim T}$$
(3.87)

 $\zeta_F(s), \zeta_K(s)$ have simple poles at s = 1 $\Rightarrow^* \quad L(\rho, s)^n$ cannot have a zero at s = 1 $\Rightarrow \quad L(\rho, s)$ can be analytically continued to s = 1 and is non-zero there. (*: using L(T, s) are bounded at s = 1)

Theorem 3.23 (Artin-Brauer (non-examinable))

 $L(\rho, s)$ is meromorphic on all of \mathbb{C}

Lemma 3.24

(This lemma strengthen Theorem 3.19) F/K Galois, $\rho \neq 1$ 1-dimensional representation of Gal(F/K). Then $L(\rho, 1) \neq 0$

Proof

By Proposition 3.18(ii) we may assume that ρ is faithful, so Gal(F/K) is abelian (cyclic). Then (by Proposition 3.18(i),(iii))

$$\zeta_F(s) = \prod_{\chi 1-\text{dim repn of } \text{Gal}(F/K)} L(\chi, s) = \zeta_K(s) \prod_{\chi \neq 1} L(\chi, s)$$
(3.88)

As ζ_F, ζ_K have a simple pole at s = 1 and all other $L(\chi, s)$ are analytic there, it follows that $L(\chi, 1) \neq 0$ In particular, $L(\rho, 1) \neq 0$

3.6 Density Theorems

Definition 3.25

Let S be a set of prime numbers. Then S has Dirichlet density α if

$$\sum_{p \in S} \frac{p^{-s}}{\log \frac{1}{1-s}} \to \alpha \quad \text{as} \quad s \to 1^+$$
(3.89)

Example:

By Dirichlet's Theorem (Theorem 3.12)

- The set of all primes has density 1
- $S_{a,N} = \{p \text{ prime, } p \cong a \mod N\}$ has density $\frac{1}{\phi(N)}$ whenever (a, N) = 1

<u>Notation</u>:

For F/\mathbb{Q} Galois, p unramified in F, write $\operatorname{Frob}_p \in \operatorname{Gal}(F/\mathbb{Q})$ for the Frobenius element $\operatorname{Frob}_{\mathfrak{q}/p}$ of some prime \mathfrak{q} above p. Note that it lies in well-defined conjugacy class of $\operatorname{Gal}(F/\mathbb{Q})$, as (c.f. Example Sheet 2)

$$\operatorname{Frob}_{\mathfrak{q}'/p} = x \operatorname{Frob}_p x^{-1} \quad \text{when } \mathfrak{q}' = x(\mathfrak{p})$$

$$(3.90)$$

Example:

Let $\overline{F} = \mathbb{Q}(\zeta_N)$ and $\sigma_a \in \operatorname{Gal}(F/\mathbb{Q})$ with $\sigma_a(\zeta_N) = \zeta_N^a$

For $p \nmid N$, $\operatorname{Frob}_p = \sigma_a \Leftrightarrow p \cong a \mod N$ (as $\operatorname{Frob}_p(\zeta_N) = \zeta_N^p$) So Dirichlet Theorem \Rightarrow $S_{N,\sigma} = \{p \nmid N, \operatorname{Frob}_p = \sigma\}$ has Dirichlet density $\frac{1}{|\operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})|}$ i.e. Frob_p is "uniformly distributed" among $\operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$

Theorem 3.26 (Chebotarev's Density Theorem)

Let F/\mathbb{Q} be a finite Galois extension and \mathcal{C} conjugacy class of $\operatorname{Gal}(F/\mathbb{Q})$. Then

 $S_{\mathcal{C}} = \{p \text{ unramified in } F/\mathbb{Q} \text{ s.t. } \operatorname{Frob}_{p} \in \mathcal{C}\} \text{ has Dirichlet density } \frac{|\mathcal{C}|}{|\operatorname{Gal}(F/\mathbb{Q})|}$

Corollary 3.27 (Frobenius)

let $f(X) \in \mathbb{Z}[X]$ be a monic irreducible polynomial. The set of primes p such that $f(X) \mod p$ factorises as a product of irreducible polynomials of degree d_1, \ldots, d_n has Dirichlet density:

$$\frac{|\{g \in \operatorname{Gal}(f) \text{ has cycle type } (d_1, d_2, \dots, d_n) \text{ on roots of } f\}|}{|\operatorname{Gal}(f)|}$$
(3.91)

Proof

 $f(X) \mod p$ has a repeated root in $\overline{\mathbb{F}_p}$ modulo only finitely many primes.

For the rest, Frob_p acts as an element of cycle type (d_1, \ldots, d_n) where these are the degrees of the irreducible factors of $f(X) \mod p$

Example:

f(X) irreducible quintic, with Galois group S_5

- prime p s.t. $f(X) \mod p$ is irreducible has density $\frac{|\{5-\text{cycles in } S_5\}|}{120} = \frac{24}{120} = \frac{1}{5}$
- primes p s.t. $f(X) \mod p$ splits into linear factors has density $\frac{1}{120}$
- primes p s.t. $f(X) \mod p = \text{quadratic} \times \text{cubic has density } \frac{20}{120} = \frac{1}{6}$

Corollary 3.28

If $f(X) \in \mathbb{Z}[X]$ monic irreducible with deg f > 1, then $f(X) \mod p$ has no root in \mathbb{F}_p for infinitely many primes p

Proof

Sufficient to prove: $\exists g \in \operatorname{Gal}(F/\mathbb{Q})$ that fixes no root of f(X)

But $\bigcup_{\alpha \text{ roots}} \operatorname{Stab}_{\operatorname{Gal}(f)}(\alpha) \neq \operatorname{Gal}(f)$ since each $\operatorname{Stab}(\alpha)$ has size $\frac{|\operatorname{Gal}(f)|}{\deg f}$ and each contains the identity element

Proof of Chebotarev's Density Theorem 3.26

For ρ irreducible representation of $\operatorname{Gal}(F/\mathbb{Q})$, let

$$L_*(\rho, s) = \prod_{p \text{ unram.}} P_p(\rho, p^{-s})^{-1}$$
(3.92)

Step 1:

By Example Sheet 1 Q10, only finitely many primes ramify in F/\mathbb{Q} , so Corollary 3.22 \Rightarrow :

- $L_*(\rho, s) \neq 0, \infty$ at s = 1 if $\rho \neq 1$ irreducible
- $L_*(1, s)$ has a simple pole at s = 1

Step 2:

Write χ_p for the character of ρ . If ρ unramified in F/\mathbb{Q} , and $\lambda_1, \ldots, \lambda_d$ are the eigenvectors (with multiplicities) of Frob_p on ρ , then

$$\log \frac{1}{P_p(\rho, p^{-s})} = \log \frac{1}{\pi (1 - \lambda_i p^{-s})}$$
(3.93)

$$= \sum_{i} \log\left(\frac{1}{1 - \lambda_i p^{-s}}\right) \tag{3.94}$$

$$= \left(\sum \lambda_i\right) p^{-s} + \left(\frac{\sum \lambda_i^2}{2}\right) p^{-2s} + \left(\frac{\sum \lambda_i^3}{3}\right) p^{-3s} + \cdots$$
(3.95)

$$= \sum_{n\geq 1} \frac{\chi_p(\operatorname{Frob}_p^n)}{n} p^{-ns}$$
(3.96)

The Dirichlet series

$$\sum_{p \text{ unram.}} \sum_{n \ge 1} \frac{\chi_p(\operatorname{Frob}_p^n) p^{-ns}}{n}$$
(3.97)

has bounded coefficients, so (c.f. Proof of Proposition 3.10) defines an analytic branch of $\log L_*(\rho, s)$ on $\operatorname{Re}(s) > 1$. Now

$$\sum_{p \text{ unram.}} \sum_{n \ge 2} \frac{\chi_p(\operatorname{Frob}_p^n) p^{-ns}}{n}$$
(3.98)

is bounded on $\operatorname{Re}(s) > 1$ by $2 \dim \rho \sum_{k=1}^{\infty} \frac{1}{k^2}$ (c.f. Proof of Corollary 3.11), so

• $f_p(s) = \sum_{p \text{unram}} \chi_p(\text{Frob}_p) p^{-s}$ is bounded as $s \to 1$ on Re(s) if $\rho \neq 1$ (by Step 1)

•
$$f_1(s) = \sum_{punram} p^{-s} \sim \log \frac{1}{1-s}$$
 as $s \to 1$

Step 3:

$$\sum_{p \in S_{\mathcal{C}}} p^{-s} = \sum_{p \text{ unram}} C_{\mathcal{C}}(\operatorname{Frob}_p) p^{-s}$$
(3.99)

$$= \sum_{\rho} \langle \chi_{\rho}, C_{\mathcal{C}} \rangle f_{\rho}(s) \tag{3.100}$$

$$= \frac{|\mathcal{C}|}{|\operatorname{Gal}(F/\mathbb{Q})|} f_{\mathbb{I}}(s) + \sum_{\rho \neq \mathbb{I}} \langle \chi_{\rho}, C_{\mathcal{C}} \rangle f_{\rho}(s)$$
(3.101)

where

$$C_{\mathcal{C}}(g) = \begin{cases} 0 & g \notin \mathcal{C} \\ 1 & g \in \mathcal{C} \end{cases}$$
(3.102)

Hence
$$S_{\mathcal{C}}$$
 has density $\frac{|\mathcal{C}|}{|\operatorname{Gal}(F/\mathbb{Q})|}$

(End of examinable material)

Remark. Exam is 2 hours long, to complete 3 questions out of 4 questions, about 50% bookwork. For representation theory, you should know for $C_2 \times C_2, S_3$, cyclic groups, D_8, D_10 (with hint), D_{2n}, S_4, A_4, Q_8 , abelian groups (with help sometimes)

For Galois theory, what you must know includes finite fields \mathbb{F}_q and cyclotomic fields $\mathbb{Q}(\zeta_n)$ For complex analysis, nothing beyond bookwork (i.e. this lecture notes) is needed

4 Local Fields

(Warining: This section may be exambinable for Local Fields)

Definition 4.1

A place in a number field K is an equivalence class of (non-trivial) absolute values on K

There are <u>two functors</u>:

• infinite places v (correspond to archimedean absolute values) cam from embedding $K \hookrightarrow \mathbb{R}$ or $K \hookrightarrow \mathbb{C}$ and taking

$$|x|_{v} = \begin{cases} |x| & \text{for real embeddings} \\ |x|^{2} & \text{for complex ones} \end{cases}$$
(4.1)

(these are the usual normalisations)

- (Note: Complex conjugate embeddings give same $| |_v$)
- \underline{Fact} : The rest don't and each archimedean absolute value arises in this way
- \Rightarrow number of infinite places of $K = r_1 + r_2$
- finite places (correspond to non-archimedean absolute values) correspond to primes of K: If \mathfrak{p} is a prime, set $|x|_{\mathfrak{p}} = N(\mathfrak{p})^{-\operatorname{ord}_{\mathfrak{p}}(x)}$, where $\operatorname{ord}_{\mathfrak{p}}(x)$ for $x \in \mathcal{O}_K$ is the power of \mathfrak{p} in factorisation of (x) and extended multiplicatively to K^{\times}

<u>Fact</u>: (Ostrowski) These are inequivalent (for different \mathfrak{p}) and there are no others

Completions: $| |_v$ makes K into a metric space. Its completion K_v is a complete local field

v archimedean $\Rightarrow K_v \mathbb{R}$ or \mathbb{C} (this is boring to number theorists) Hence forth assume v is a finite place

If $K = \mathbb{Q}$ and v correspond to p, then $K_v = \mathbb{Q}_p$ If K general, v corresponds to \mathfrak{q} which lies above $p \in \mathbb{Z}$ then $| |_v$ restricted to \mathbb{Q} is equivalent to $| |_p$ $\Rightarrow K_v$ is a finite extension of \mathbb{Q}_p

4.1 Residue field and ramification

K number field, $\mid\mid_v$ absolute value corresponding to \mathfrak{q}

 $\begin{array}{ll} \mathcal{O}_{K_v} \subseteq K_v & (\text{elements with } |x|_v \leq 1) \\ \mathcal{O}_{K_v}^{\times} = \text{units} & (\text{elements with } |x|_v = 1) \\ \mathfrak{m}_v = \text{maximal ideal of } \mathcal{O}_{K_v} & (\text{elements with } |x|_v < 1) \\ k_v = \mathcal{O}_{K_v} / \mathfrak{m}_v = \text{residue field} \end{array}$

Observe $\mathfrak{q} \subset \mathfrak{m}_v, \mathcal{O}_K \subseteq \mathcal{O}_{K_v}, \mathcal{O}_K / \mathfrak{q} \to k_v$

- is injective (clear: a field homomorphism)
- surjective (every element of K_v can be approximated by an element of K)

 $\Rightarrow \qquad \mathcal{O}_K / \mathfrak{q} = k_v$ - residue field does not change by completion

If L/K field extension, \mathfrak{r} lies above \mathfrak{q} (and $||_w$ correspond to \mathfrak{r})

$$\Rightarrow L_w/K_v$$
 finite (4.2)

$$f_{\mathfrak{r}/\mathfrak{q}} = f_{w/v} \qquad \text{(by bove)} \tag{4.3}$$

$$e_{\mathfrak{r}/\mathfrak{q}} = e_{w/v}$$
 (compare valuations) (4.4)

4.2 Galois Groups

F/K Galois extension of number fields, \mathfrak{q} lies above \mathfrak{p} , $| |_w$, $| |_v$ corresponding absolute values respectively.

 $\begin{array}{ll} \text{If } g \in D_{\mathfrak{q/p}} \text{ then it preserve } \mid \mid_w \\ \Rightarrow & \text{it is a topoogical equivalence} \\ \Rightarrow & \text{it extends to an automorphism of } F_w \\ \Rightarrow & \text{we get } D_{\mathfrak{q/p}} \to \operatorname{Gal}(F_w/K_v) \end{array}$

Lemma 4.2

This is an isomorphism

Sketch Proof

Injective: easy Surjective: $|D_{\mathfrak{q}/\mathfrak{p}}| = e_{\mathfrak{q}/\mathfrak{p}}f_{\mathfrak{q}/\mathfrak{p}} = e_{w/v}f_{w/v} = [F_w:K_v] = |\operatorname{Gal}(F_w/K_v)|$

Observe also that $I_{\mathfrak{q}/\mathfrak{p}} \xrightarrow{\sim} I_{w/v}$ also isomorphic (being the element that act trivially on respective residue field)

4.3 Applications

Proposition 4.3

If $f(X) \in \mathcal{O}_K[X]$ is Eisenstien w.r.t \mathfrak{p} and α a root then $K(\alpha)/K$ has degree = deg f and is totally ramified at \mathfrak{p}

Proof

Complete and invert Local Fields course

Proposition 4.4

Decomposition groups are soluble

Proof

Galois groups of finite extensions of \mathbb{Q}_p are soluble: $I \leq G, G/I$ cyclic $I_1 \leq I$ with I_1/I cyclic (I_1 =wild inertia group) I_1 is a *p*-group

Example 4.5

There are no C_4 -extensions at \mathbb{Q} where quadratic subfield is $\mathbb{Q}(\zeta_3)$

Proof

 $\mathbb{Q}(\zeta_3)/\mathbb{Q} \text{ ramified at } 3 \\ \Rightarrow \quad \text{Inertia at 3 must be all of } C_4$

Complete at (the prime of F above) 3, get F_w/\mathbb{Q}_3 to atally ramified, cyclic of degree 4.

But this is a tame extension (since $3 \nmid 4$) \Rightarrow $\operatorname{Gal}(F_w / \mathbb{Q}_3) \hookrightarrow \mathbb{F}_3^{\times}$ which is nonsense #