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1 Number Fields

1.1 Ring of integers

Definition 1.1
A number field K is a finite field extension of Q. (Its degree [K : Q] = dimQK as vector space is
finite)

Definition 1.2
An algebraic integer α is an algebraic number s.t. it is a root of a monic polynomial with integer
coefficient.
(Equivalently, if the monic minimal polynomial for α over Q has Z coefficient)

Definition 1.3
Let K be a number field, its ring of integers OK consists of the element of K that are algebraic
integers.

Proposition 1.4
(i) OK is a (Noetherian) ring
(ii) rkZOK = [K : Q] (i.e. as an abelian group, OK

∼= Z⊕[K:Q])
(iii) ∀α ∈ K, ∃n ∈ Z, n ̸= 0 s.t. nα ∈ OK

Example:

Number Fields K Ring of integers OK

Q Z
Q(i) Z[i]

Q(
√
d), d ∈ Z \{0} squarefree

{
Z[
√
d] d ≡ 2, 3 mod 4

Z[1+
√
d

2 ] d ≡ 1 mod 4

Q(ζn) (ζn primitive n-th root of 1) Z[ζn]

Example:

K = Q(
√
−3) = Q(ζ3) OK = Z[1+

√
−3

2 ] = Z[ζ3] (ζ3 =
−1−

√
−3

2 ) (see notes for picture)

Proposition 1.5
(i) OK is the maximal subring of K which is finitely generated as an abelian group
(ii) OK is integrally closed in K (i.e. if f ∈ OK [x] monic and f(α) = 0 α ∈ K, then α ∈ OK)
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Example (on factorisations)
In Z, however you factorise an integer, you always end up with the same factorisation into irreducible
bits, at least up to signs and order.
-The ambiguity in signs comes from the units ±1 ∈ Z
-Unique factorisation in this form fails in general number field
e.g. Q[

√
−5], OK = Z[

√
−5]

6 = 2 × 3 = (1 +
√
−5)(1 −

√
−5) are genueinly different factorisations (because Z[

√
−5] not UFD).

To rescue this, works with ideals.

1.2 Units

Definition 1.6
A unit in a number field K is an element α ∈ OK with α−1 ∈ OK , the group of unit is denote by O×

K

Example: Units in Q are Z× = {±1}
Units in Q(i) are Z[i]× = {±1,±i}
Units in Q(

√
2) are Z[

√
2]× = {±(1 +

√
2)n | n ∈ Z}

Theorem 1.7 (Dirichlet’s Unit Theorem)
Let K be a number field, then OK is finitely generated. More precisely,

O×
K ≃ ∆× Zr1+r2−1

where

∆ = the (finite) group of roots of unity in K

r1 = # distinct embedding K ↪→ R
r2 = # distinct conjugate pairs of embedding K ↪→ C , with image * R

(⇒ r1 + 2r2 = [K : Q])

Corollary 1.8
The only number fields with finitely many non-units are Q, and imaginary quadratic fields (i.e.
Q(
√
−D) for some D ∈ Z+)

1.3 Ideals

Example 1.9 (i) K = Q OK = Z
a = (17)=all multiples of 17
α ∈ a iff it is a multiple of 17
Multiplying ideals: (3)(17) = (51)

(ii) K = Q(
√
−5) OK = Z[

√
−5] (not PID) (see picture)
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An ideal is, in particular, a sublattice of OK . In fact, it always has finite index (see later)

Theorem 1.10 (Unique Factorisation of Ideals)
Let K be a number field. Every non-zero ideal of OK admits a factorisation into prime ideals. This
factorisation is unique up to order.

Definition 1.11
Let a, b E OK . Then a divides b (written a |b) if a c = b for some ideal c (Equivalently if the prime
factorisations a = pn1

1 · · · p
nk
k , b = pm1

1 · · · p
mk
k we have ni ≤ mi ∀i)

Remark. (i) For α, β ∈ OK , (α) = (β) ⇔ α = uβ for some u ∈ O×
K

(ii) (nontrivial) For ideals a, b a |b⇔ a ⊇ b

(iii) To multiply ideals, simply multiply their generators
e.g. (2)(3) = (6)
(2, 1 +

√
−5)(2, 1−

√
5) = (4, 2 + 2

√
−5, 2− 2

√
−5, 6) = (2)

(iv) To add ideals, combine their generators
e.g. (2) + (3) = (2, 3) = (1) = OK

Lemma 1.12
a, bEOK , a =

∏
i p

ni
i b =

∏
i p

mi
i

(i) a∩ b =
∏

i p
max(ni,mi)
i (“lcm”)

(ii) a+ b =
∏

i p
min(ni,mi)
i (“gcd”)

Proof
Use Remark (ii)

(i) This is the largest ideal contained in both a and b

(ii) This is the smallest ideal containing both a and b

Lemma 1.13
Let α ∈ OK \{0} Then ∃β ∈ OK \{0} s.t. αβ ∈ Z \{0}

Proof
Let Xn + an−1X

n−1 + · · ·+ a1X + a0 be the minimal polynomial for α (with ai ∈ Z a0 ̸= 0)
So αn + an−1α

n−1 + · · ·+ a1α = −a0 ∈ Z \{0}
So take β = αn−1 + an−1α

n−2 + · · ·+ a1

Corollary 1.14
If aEOK is a nonzero ideal, then [OK : a] <∞

Proof
Pick α ∈ a \{0}, and β ∈ OK \{0} with N = αβ ∈ Z \{0}. Then N ∈ a and
[OK : a] ≤ [OK : (N)] = [OK : N OK ] = |N |[K:Q] <∞

Definition 1.15
The norm of nonzero ideal aEOK is N(a) = [OK : a]

Lemma 1.16
Let α ∈ OK \{0}. Then |NK/Q(α)| = N((α))
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Proof
Let v1, . . . , vn be a Z-basis for OK , and write Tα : K → K for the linear map Tα(v) = αv
Then

NK/Q(α) = |detTα| = [< v1, . . . , vn >:< αv1, . . . , αvn >]

= [OK : (α)] = N((α))

1.4 Ideal Class Group

K a number field. Define an equivalence relation on nonzero ideals of OK by

g ∼ h if ∃λ ∈ K×s.t. a = λ b (1.1)

The ideal class group of K, ClK , is the set of classes, {non-zero ideals}/ ∼
It is a group, the group structure coming from multiplication of ideals.
The principal ideals form the identity class, and OK is UFD ⇔ ClK = 1

Theorem 1.17
ClK is finite

Exercise: Let K = Q(
√
−D) for D ∈ Z+, show that two non-zero ideals a, bEOK have the same class

in ClK iff they are homothetic (i.e. the lattices in C given by the points of a and b are related by a
scaling and a rotation about 0) (elements of ClK ↔ shapes of lattices)
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1.5 Primes and Modular Arithmetic

Definition 1.18
A prime p of a number field K is a nonzero prime ideal of OK . Its residue field is OK / p
Its (absolute) residue degree is fp = [OK / p : Fp] where p = charOK / p is its residue characteristic

Lemma 1.19
The residue field of a prime is a finite field

Proof
p prime ⇒ OK / p is an integral domain.
Also, | OK / p | = N(p) is finite ⇒ OK / p is a field

Note: The size of the residue field at p is N(p)

Example:

• K = Q, OK = Z, p = (17) ⇒ residue field OK / p = Z /(17) = F17

• K = Q(i), OK = Z[i], p = (2 + i), OK / p = F5 (representatives 0,1,i+1,2,2+i)
If p = (3), OK / p = F9(= “F3[i])” (see picture)

• K = Q(
√
d) d ≡ 2, 3 mod 4 (for simplicity) OK = Z[

√
d]

Let p be a prime of K, with residue characteristic p. Then OK / p is generated by Fp and the
image of

√
d. The latter is some root of X2 − d over Fp

⇒ OK / p =

{
Fp if d is a squre mod p

Fp2 otherwise

Notation: If 0 ̸= aEOK , we say
x ≡ y mod a (1.2)

(e.g. 3 ≡ i mod (2 + i) in the first example)

Theorem 1.20 (Chinese Remainder Theorem)
K number field, p1, . . . , pk distinct primes. Then

OK / pn1
1 · · · p

nk
k → OK / pn1

1 × · · · × OK / pnk
k (1.3)

x mod pn1
1 · · · p

nk
k 7→ (x mod pn1

1 , . . . , x mod pnk
k ) (1.4)

is a ring isomorphism

Proof
Define ψ : OK → OK / pn1

1 × · · · × OK / pnk
k by ψ(x) = (x mod pn1

1 , . . . , x mod pnk
k )

Then kerψ = {x | x ≡ 0 mod pni
i ∀i} =

∪
i p

ni
i =

∏
i p

ni
i by Lemma 1.12(i)

Remains to show that ψ is surjective:
By Lemma 1.12(ii),

5



p
nj

j +
∏

i̸=j p
ni
i = OK

⇒ ∃α ∈ p
nj

j , β ∈
∏

i̸=j p
ni
i s.t. α+ β = 1

⇒

{
β ≡ 0 mod pni

i ∀i ̸= j

β ≡ 1 mod p
nj

j

Thus (0, . . . , 0, 1, 0, . . . , 0) ∈ Imψ ∀j (1 at j-th place) ⇒ ψ surjective

Remark: Chinese Remainder Theorem implies that we can solve any system of congrueces

x ≡ a1 mod pn1
1

...

x ≡ ak mod pnk
k

(This is called the Weak Approximation Theorem)

Lemma 1.21
pEOK prime ideal

(i) | OK / pn | = N(p)n (think as “|Fp |”)
(ii) pn / pn+1 ∼= OK / p as an OK-module (as an abelian group)

Proof
(ii)⇒(i): | OK / pn | = | OK / p || p / p2 | · · · | pn−1 / pn | = N(p)n

(ii): By unique factorisation pn ̸= pn+1, so take π ∈ pn \ pn+1 (i.e. pn |(π), pn+1 - (π))
Let ϕ : OK → pn / pn+1 by ϕ(x) = πx mod pn+1

kerϕ = {x | πx ∈ pn+1} = {x | pn+1 |(π)(x)} = {x | p |(x)} = p (1.5)

Imϕ = pn / pn+1 (1.6)

since (π) + pn+1 = pn by Lemma (1.12)(ii) (1.7)

By First Isomorphism Theorem, OK / p
∼−→ pn / pn+1

Corollary 1.22
N(a b) = N(a)N(b)

Proof
Follows from Theorem 1.20 and Lemma 1.21

Corollary 1.23
a ∋ N(a) (True for prime ideals, as char OK / p ≡ 0 mod p, so | OK / p | ∈ p, and use multiplicativ-
ity)

(In fact, this is obvious anyway as N(a) must be zero in any abelian group of order N(a). In particular,
in OK / a; i.e. a ∋ N(a))
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1.6 Extending the Number Field

Example: Q(i)/Q Take primes in Q and factorise in Q(i)

2Z[i] = (2) = (1 + i)2 ← 2 ramifies (1.8)

3Z[i] = (3) is prime ← 3 inert (1.9)

5Z[i] = (5) = (2 + i)(2− i) ← 5 splits (1.10)

Note that p ∋ N(p) and hence some prime number p, so p|(p). Thus factorising 2, 3, 5, 7, . . . yields all
the primes of Q(i)

Definition 1.24
Let L/K be an extension of number fields, and aEOK ideal.
Then conorm of a is the ideal aOL of OL the ideal generated by the elements of a in OL

Equivalently, if a = (α1, . . . , αn) as an OK-ideal, then aOL = (α1, . . . , αn) as an OL-ideal

Note:

(aOL)(bOL) = (a b)OL

aOM = (aOL)OM when K ⊆ L ⊆M

Warning: Sometimes write g for gOL as well.

Proposition 1.25
L/K extension of number fields, a ⊆ OK a non-zero ideal. Then

N(aOL) = N(a)[L:K] (1.11)

Proof
If a = (α) is principal, then (by Lemma 1.16)

N(aOL) = |NL/Q(α)| = |NK/Q(α)|[L:K] = N(a)[L:K]

so all ok. In general, ak = (α) for some k, (since ClK is finite)
Hence N(aOL)

k = N(a)k[L:K], and so N(aOL) = N(a)[L:K]

Definition 1.26
A prime q of L lies above a prime p of K if q | pOL

(Equivalently, if pOL = q×“other stuff”
Equivalently, if q ⊇ p)

Lemma 1.27
L/K number fields. Every prime of L lies above a unique prime of K: q lies above q∩OK

Proof
q∩OK is a prime ideal of OK , and it is non-zero as, for example, it contains N(q) (Corollary 1.23).
So q lies above p = q∩OK

If q also lies above p′ ̸= p, then q ⊇ p+ p′ = OK ∋ {1} #

Lemma 1.28
Suppose qEOK lies above pEOK

Then OL / q is a field extension of OK / p

7



Proof
Define

ϕ : OK / p → OL / q (1.12)

x mod p 7→ x mod q (1.13)

This is well-defined as q ⊇ p
This is ring homomorphism (and 1 7→ 1), so has no kernel as OK / p is a field, i.e. an embedding
OK / p ↪→ OL / q

Note (to the proof): The “reduction mod q” map in OL extends the “reduction mod p” map in OK

Example: Q(i)/Q
p = 3 p = (3)
Note that nZ[i] = (n)OL has norm n2 = n[Q(i):Q] (c.f. Proposition 1.25)

Definition 1.29
If q lies above p, then its residue degree is fq / p = [OL / q : OK / p]
Its ramification degree is the exponent eq / p in the prime factorisation pOL = qeq / p

∏
(other primes)

Theorem 1.30
L/K an extension of number fields, p a prime of K

(i) If pOL decomposes as pOL =
∏m

i=1 q
ei
i (qi distinct, ei = eqi / p, fi = fqi / p). Then

m∑
i=1

eifi = [L : K] (1.14)

(ii) If M/L a further field extension, r lies above q lies above p (in M,L,K respectively) Then

er/ qeq / p = er/ p (1.15)

and fr/ qfq / p = fr/ p (1.16)

Proof

(i) N(p)[L:K] = (Prop1.25) N(pOL) = N(
∏

qeii ) = (Cor1.22)
∏
N(qi)

ei =
∏
N(q)fiei = N(q)

∑
eifi

(ii) Multiplicativity of e follows by writing out the prime decomposition of pOM . That of f is the
Tower Law: [OM /r : OL / q][OL / q : OK / p] = [OM /r : OK / p]

Definition 1.31
L/K extension of number fields, p a prime of K with pOL =

∏m
i=1 q

ei
i

Then p splits completely in L if m = [L : K], m > 1 (⇒ ei = fi = 1)
and p is totally ramified in L if m = f1 = 1, e1 = [L : K]
We will see that when L/K is Galois then ei = ej , fi = fj ∀i, j. Then, say p is ramified at e1 > 1
(being unambiguous) or is unramified if e1 = 1

Example:
5 splits (completely) in Q(i)/Q (5 = (2 + i)(2− i))
2 is (totally) ramified in Q(i)/Q (2 = (1 + i)2)
p is totally ramified in Q(ζpn)/Q, ζpn=prime pn-th root of unity
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Theorem 1.32 (Kummer-Dedekind)
L/K an extension of number fields.
Suppose [OL : OK [α]] = N < ∞ for some algebraic integer α ∈ OL with minimal polynomials
f(X) ∈ OK [X]
Let p ⊆ OK be a prime ideal s.t. p - N (⇒ charOK / p - N)

If f(X) mod p =

m∏
i=1

ḡi(X)ei (ḡi distinct irreducible)

then pOL =

m∏
i=1

qeii qi = pOL+gi(α)OL

where gi(X) ∈ OK [X] s.t. ḡi(X) = gi(X) mod p
and qi are distinct primes of L with eqi / p = ei and fqi / p = deg ḡi

Example:
K = Q L = Q(ζ5) ζ = ζ5 =primitive 5-th root of unity OL = Z[ζ]
Take α = ζ, so N = 1, f(X) = X4 +X3 +X2 +X + 1
f(X) mod 2 is irreducible ⇒ (2) is prime in OL, residue field is F16

f(X) mod 3 is irreducible ⇒ (3) is prime in OL, residue field is F81

f(X) mod 5 = (X − 1)4 ⇒ (5) = (5, ζ − 1)4

f(X) mod 7 is irreducible
f(X) mod 11 = (X − 4)(X− 9)(X − 5)(X − 3) ⇒ (11) = (11, ζ− 4)(11, ζ− 9)(11, ζ− 5)(11, ζ− 3)
f(X) mod 19 = (X2 + 5X + 1)(X2 − 4X + 1) ⇒ (19) = (19, ζ2 + 5ζ + 1)(19, ζ2 − 4ζ + 1)

Example:
K = Q L = Q(ζpn) ζ = ζpn =primitive pnth root of unity and p prime

minimal polynomial f(X) = Xpn−1

Xpn−1−1
≡ (X−1)pn−pn−1

mod p ⇒ p is totally ramified in Q(ζ)/Q
If q ̸= p is also prime, gcd(Xpn − 1 mod q, d

dx(X
pn − 1) mod q) = 1

⇒ Xpn − 1 mod q has no repeated roots (in Fq)
⇒ f(X) mod q has no repeated roots
⇒ all ei = 1, i.e. q is unramified in Q(ζ)

Remark:
Cannot always find α s.t. OL = OK [α] (i.e. N = 1)
However, by the Primitive Element Theorem, can find α s.t. L = K(α). Scalar α (by an integer) can
ensure that α ∈ OL. Then OL[α] has finite index in OL

Therefore, the theorem allows us to decompose all except possibly a finite number of primes.
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Proof of Kummer-Dedekind Theorem
Write A = OK [α], F = OK / p, p = charF
•

α ← [ x (1.17)

A/(pA+ gi(α)A)
∼←− OK [X]/(f(X), p, gi(X))
∼= F[X]/(f̄(X), ḡi(X))

= F[X]/(ḡi(X)) (1.18)

a field af degree fi = deg ḡi over F (ḡi is irreducible)

• Pick M ∈ Z s.t. NM ≡ 1 mod p, and consider

ϕ : A/ pA+ gi(α)A → OL / qi (1.19)

ϕ(x mod pA+ gi(α)A) = x mod qi (1.20)

ϕ well-defined: Since qi ⊇ pA+ gi(α)A
ϕ is surjective: If x ∈ OL, then Nx ∈ A and

ϕ(MNx) = MNx mod qi (1.21)

= x mod qi (1.22)

as MN ≡ 1 mod qi ∋ p
OL / qi is non-zero, otherwise 1 ∈ pOL+gi(α)OL

⇒ both p and MN ∈ pA+ gi(α)A
⇒ 1 ∈ pA+ gi(α)A # to step 1
⇒ ϕ is an isomorphism
⇒ OL / qi is a field extension of F of degree fi = deg ḡi and qi is prime

• For i ̸= j, as gcd(ḡi(X), ḡj(X)) = 1, ∃λ(X), µ(X) ∈ OK [X] s.t.

λ(X)gi(X) + µ(X)gj(X) ≡ 1 mod p (1.23)

Then qi+ qj contains both p and λ(α)gi(α) + µ(α)gj(α) ≡ 1 mod p
⇒ qi+ qj = OL ⇒ qi ̸= qj for i ̸= j

• ∏
i

qeii =
∏
i

(
pOL+gi(α)OL

)ei (1.24)

⊆ pOL+

(∏
i

gi(α)
ei

)
OL (1.25)

= pOL since
∏

gi(α)
ei ≡ f(α) = 0 mod p (1.26)

But

N(
∏
i

qeii ) =
∏
i

(
|F |fi

)ei
(by Step 2)

= |F |
∑

eifi = |F |deg f = |F |[L:K]

= N(pOL) by Proposition 1.25 (1.27)

⇒
m∏
i=1

qeii = pOL (1.28)
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Proposition 1.33
L/Q finite extension, α ∈ OL with L = Q(α) minimal polynomial f(X) ∈ Z[X]. If f(X) mod p has
distinct roots (in Fp) then [OL : Z[α]] is coprime to p (so Kummer-Dedekind Theorem applies)

Proof
Let F=splitting field of f , f(X) =

∏
i(X − αi) αi ∈ F

Fix p a prime in F above (p).
As f(X) has no repeated roots in Fp and f(X) =

∏
i(X − αi) ( denotes reduction mod p)

⇒ αi are distinct in OF / p
⇒

∏
i<j(αi − αj) ̸= 0 mod p

Let β1, β2, . . . , βn be a Z-basis of OL (n = [L : Q])
1
α
α2

...
αn−1

 =M


β1
β2
...
βn

 for some M ∈Matn(Z) with detM = [OL : Z[α]] (1.29)

Writing id = σ1, σ2, . . . , σn for the embeddings of L ↪→F

∏
i>j

(αi − αj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

α1 α2
...

α2
1

... · · ·
...

...
...

...

αn−1
1 αn−1

2 αn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.30)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

α1 σ2(α2)
...

α2
1

... · · ·
...

...
...

...

αn−1
1 σ2(α2)

n−1 σn(αn)
n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.31)

= detM



β1 σ2(β1) · · ·σn(β1)

β2
...

...

β3
... · · ·

...
...

...
...

βn σ2(β2) σn(βn)


(1.32)

= [OL : Z[α]]B for some B ∈ OK (1.33)

(1.34)

⇒ p - [OL : Z[α]]

Proposition 1.34
K number field, p prime of K.
Suppose f(X) = Xn+an−1X

n−1+· · ·+a0 ∈ OK [X] is Eisenstein w.r.t p (i.e. p |(ai) ∀i, p2 - (a0))
Then K(α)/K has degree n = deg f and p is totally ramified in K(α), where f(α) = 0

Proof
see Local Fields
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2 Decomposition of Primes

2.1 Action of Galois groups

Let F/K be a Galois extension of number fields. Recall Gal(F/K) = AutK(F )

• F/K is normal (if f ∈ K[X] irreducible has a root in F ⇒ f splits completely in F )
• |Gal(F/K)| = [F : K]

• {subgroup} one-to-one←−−→ {intermediate field}

H ≤ Gal(F/K) → FH (fixed field of H) (2.1)

Gal(F/L) ← K ⊆ L ⊆ F (2.2)

Example:

Lemma 2.1
Let g ∈ Gal(F/K)
q prime of F above p, a prime of K

(i) α ∈ OF ⇒ gα ∈ OF (so Gal(F/K) acts on OF )

(ii) a ⊆ OF ideal ⇒ g(a) ⊆ OF ideal

(iii) a, b ideals ⇒ g(a b) = g(a)g(b), g(a+ b) = g(a) + g(b)

(iv) g(q) is a prime of F above p (so Gal(F/K) acts on the set of primes above p)

(v) eq / p = eg(q)/ p, fq / p = fg(q)/ p

Proof
Clear
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Example:
K = Q F = Q(i) OF = Z[i] Gal(F/K) = {id, complex conjugation}

Theorem 2.2
F/K Galois extension of number fields. p a prime of K.
Then Gal(F/K) acts transitively on the primes of F above p

Proof
Let q1, . . . , qn be the primes above p
Require to proof: ∃g ∈ Gal(F/K) s.t. g(q1) = q2

Pick x ∈ OF s.t.
x ≡ 0 mod q1
x ̸≡ 0 mod qi ∀i ̸= 1

(this is possible by Chinese Remainder Theorem)
Then ∏

h∈Gal(F/K)

h(x) ∈ K ∩ OF ∩ q1 = OK ∩ q1 = p ⊆ q2 (2.3)

⇒ g(x) ≡ 0 mod q2 for some g
⇒ x ≡ 0 mod g−1(q2)
⇒ g−1(q2) = q1 by choice of x
⇒ q2 = g(q1)

Corollary 2.3
F/K Galois.

If q1, q2 lie above p, then

{
eq1 / p = eq2 / p

fq1 / p = fq2 / p
(So can write ep and fp without ambiguity)
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2.2 Decomposition Groups

Definition 2.4
Let F/K be a Galois extension of number fields, q a prime of F above p, a prime of K
The decomposition group Dq(= Dq / p) of q (over p) i.e.

Dq / p = StabGal(F/K)(q) (2.4)

Remark. The decomposition group determines how p decomposes in all intermediate extensions.

Example 2.5
Gal(F/K) = S4 Dq / p = S3 < S4
⇒ ∃4 primes above p (by Orb-Stab Theorem)
and action of S4 on these is the usual action on 4 points

Consider H = {id, (12)(34)} ≤ S4 and L = FH

Gal(F/L) acts transitively on the primes of F above every prime of L
⇒ number of primes in L above p = number of H-orbits on {q1, q2, q3, q4} = 2

Remark. If G is a finite group

{transitive G-sets}/ ∼= ←→ {subgroup of G}/conjugacy (2.5)

X 7−→ Stab(x) (2.6)

G/H ←−[ H (2.7)

Number of primes in FH above p = number of H-orbits on {primes above p} = number of H-orbits
on G/Dq / p = number of double cosets HxD

Note:
Double coset HxD for x ∈ G is the set {hxd|h ∈ H, d ∈ D}
G =

⊔
double cosets

If y ∈ HxD ⇒ HyD = HxD
Warning: double cosets can have different sizes, unlike coset

g ∈ Dq fixes q ⇒ it acts on OF / q by

x mod q 7→ g(x) mod q (2.8)

This gives a natural map
Dq −→ Gal((OF / q)/(OK / p)) (2.9)

(think it as Gal(Fq /Fp))

Example:
F = Q(i) K = Q p = 3

Gal(F/Q) = {id,c} where c =complex conjugate∈ D(3)

Complex conjugation acts as (a+ bi mod 3) 7→ (a− bi mod 3) = ((a+ bi)3 mod 3)
which is the Frobenius automorphism x 7→ x3 on F9

14



Theorem 2.6
F/K Galois, q prime of F above p prime of K
Then the natural map

Dq −→ Gal((OF / q)/(OK / p)) (2.10)

is surjective

Proof
β ∈ OF / q with OF / q = OK / p[β] (e.g. a generator for (OF / q)

×)
Let f(x) ∈ OK / p[X] be its minimal polynomial and β = β1, β2, . . . , βn ∈ OF / q its roots
Sufficient to proof: ∃g ∈ Gal(F/K) with g(q) = q and g(β) = β2

Pick α ∈ OF with α mod q = β, α mod q′ = 0 for all other prime q′ above p (this is okay by CRT)
Let F(X) ∈ OK [X] be its minimal polynomial over K
and α = α1, α2, . . . , αr ∈ OK be its roots (note F/K normal ⇒ all roots are in F )

F(X) mod p has β as a root
⇒ F(X) mod p is divisible by f(X)
⇒ F(X) mod p has β2 as a root

WLOG α2 mod q = β2
Now take g ∈ Gal(F/K) s.t. g(α) = α2

Then g(α) ̸= 0 mod q ⇒ g(q) = q and g(β) = β2

Corollary 2.7
K number fields, F/K splitting field of monic irreducible f(X) ∈ OK [X]
Let p be a prime of K and assume

f(X) mod p = g1(X)g2(X) · · · gk(X) (2.11)

with gi(X) ∈ OK / p[X] distinct irreducible, with degree deg gi = di
Then Gal(F/K) ≤ Sn (n = deg f) has an element of cycle type (d1, d2, . . . , dk)

Proof
Let q be a prime above p and let α1, . . . , αn ∈ F be the roots of f .
f(αi mod q) mod p = 0 ∀i and αi mod p distinct (since gi distinct)
⇒ action of Dq / p on α1, . . . , αn = action on the roots of f mod p
Now take g which maps to the generator Gal((OF / q)/(OK / p))
⇒ g has the correct cycle type on the αi

Definition 2.8
F/K Galois, q a prime above p
The inertia subgroup (at q), denote Iq = Iq / p is the (normal) subgroup of Dq that acts trivially on
OF / q, i.e.

Iq = ker (Dq�Gal((OF / q)/(OK / p))) (2.12)

Dq�Gal((OF / q)/(OK / p)) surjective ⇒ Dq/Iq ∼= Gal((OF / q)/(OK / p))

We also have
Gal((OF / q)/(OK / p)) ∼= Z /mZ ∼= ⟨ϕ⟩ (2.13)

where ϕ is the Frobenius map ϕ(x) = xN(p) and m =order of N(p) in OK / p
The (arithmetic) Frobenius element is Frobq / p ∈ Dq/Iq s.t. Frobq / p 7→ ϕ under the induced map

Note: In Corollary 2.7, Iq / p is trivial and Frobq / p acts as the element of Sn of cycle type (d1, . . . , dn)

15



Theorem 2.9
F/K Galois extension of number field, q a prime of F above p a prime of K. Then

(i)
∣∣Dq / p

∣∣ = eq / pfq / p

(ii) The order of Frobq / p = fq / p

(iii)
∣∣Iq / p∣∣ = eq / p

If L an intermediate field, s a prime of L below q, then

(i) Dq /s = Dq / p ∩Gal(F/L)

(ii) Iq /s = Iq / p ∩Gal(F/L)

Proof

(i) If n =number of primes above p, then

n
∣∣Dq / p

∣∣ =
∣∣Gal(F/K)

∣∣ (by Orb-Stab and transitivity) (2.14)

= [F : K] = neq / pfq / p (by Theorem1.30 and Corollary 2.3) (2.15)

(ii) fq / p = [OF / q : OK / p] =
∣∣Gal((OF / q)/(OL / p))

∣∣ = order of Frobq / p

(iii)
∣∣Dq / p

∣∣ = ∣∣Iq / p∣∣·order of Frobq / p ⇒
∣∣Iq / p∣∣ = eq / pfq / p

fq / p

The rests are straight forward from definition

Example:
K = Q F = Q(ζn) ζn =primitive n-th root of unity
Let p - n be a prime number, q a prime of F above p
p is unramified ⇒ Iq / p = {id} and Dq / p = ⟨Frobq / p⟩
Frobq / p acts x 7→ xp on OF / q
⇒ Frobq / p(ζn) = ζpn (as ζin are distinct in OF / q)
In particular fq / p = order of Frobq / p =order of p in (Z /nZ)×

2.3 Counting Primes

Lemma 2.10
F/K Galois extension of number fields

(i) primes of K are in bijection with Gal(F/K)-orbits of primes of F via

p ←→ {primes above p in F}

(ii) If q is a prime of F above p, then
gDq 7→ g(q) (2.16)

is a Gal(F/K)-set isomorphism from {primes above p} to G/Dq

(iii) Dg(q) = gDqg
−1 and Ig(q) = gIqg

−1
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Proof
(1) follows from transitivity of Gal(F/K) of primes above p
(2),(3) is just elementary check

Corollary 2.11
F/K Galois, L = K(α) intermediate field. Then{

primes of L
above p

}
↔

{
Gal(F/L)-orbits on
primes of F above p

}
↔

{
H −Dq double cosets

(H\G/Dq)

}
(2.17)

s 7−→
(

elements of G that send
q to a prime above s

)
(2.18)

Note:

{H −D double cosets} = H-orbits on G/D (2.19)

= D-orbits on H\G (D acts by d(Hg) = Hgd−1) (2.20)

Interpretation of the latter set:
H=Stabiliser of α in the action of G on the root of the minimal polynomial of α i.e. we want the
Dq-orbits on the embeddings L ↪→F

Proposition 2.12
F/K Galois extension of number fields. L = K(α) an intermediate field, G = Gal(F/K),H =
Gal(F/L). Let p be a prime of K, q above p a prime at F
Consider the G-set (of size [L : K])

X = H \G ∼= {embeddingsL ↪→F} ∼= { roots of minimal polynomial of α} (2.21)

Then
{primes of L above p} 1−1←→ Dq / p-orbits on X with (2.22)

es/ pfs/ p = size of the Dq-orbits (2.23)

es/ p = size of any Iq-suborbit (2.24)

fs/ p = number of Iqsuborbits (2.25)

Explicitly
s 7→ Orbit of g−1(α) where g(q) lies above s (2.26)

Proof
One-to-one correspondence:
This is the correspondence constructed in Corollary 2.11 and the note. Now,

size of Dq-orbits of g
−1(α) =

|Dq|∣∣StabDqg
−1(α)

∣∣ =
|Dq|∣∣StabgDqg−1(α)

∣∣ (2.27)

=
|Dq|

|gDqg−1 ∩H|
=

|Dq|∣∣Dg(q)/s

∣∣ (2.28)

=
eq / pfq / p

eg(q)/sfg(q)/s
=

eg(q)/ pfg(q)/ p

eg(q)/sfg(q)/s
= es/ pfs/ p (2.29)

Similarly,

size of Iq-orbits = es/ p (note indepentdent of the suborbit) (2.30)

⇒ number of Iq-suborbits =
fs/ pes/ p

es/ p
= fs/ p (2.31)
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Example:

K = Q F = Q(ζ5,
5
√
2) p = 73

Fix r, q primes above 73 in Q(ζ5) and F , respectively

• 73 is a generator of (Z /5Z)× ⇒ r has residue degree 4

• q /p is unramified: otherwise 5|eq /73 which cannot happen as there is no ramification inQ( 5
√
2)/Q

(because X5 − 2 has distinct roots mod 73)
⇒ eq /73 = 1 fq /73 = 4 or 20
⇒ Iq = {1} Dq

∼= C4 or C20, but C20 is not a subgroup of Gal(F/Q)
⇒ Dq

∼= C4

Take L = Q( 5
√
2), Gal(F/Q) acts on 5

√
2, ζ 5
√
2, ζ3 5
√
2

WLOG Dq fixes 5
√
2 and cyclicly permutes the rest

⇒ 2 primes in L above 73; residue degree 1, 4; ramification degrees 1,1

2.4 Representations of the Decomposition Group

Convention for this section:
F/K Galois extension of number fields, p a prime of K, q lies above p
Write D = Dq / p, I = Iq / p,Frob = Frobq / p
Notation:
If V is a representation of D, write V I for the subspace of I-invariant vectors. As I E D, this is a
subrepresentation (Exercise: Check this)

Lemma 2.13
If V is an irreducible representation of D, then

either V I = 0
or V is 1 dimensional, lifted from D/I (i.e. D → D/I → C) (These kills I, and are determined
by image of Frob)

Proof
V I subrepresentation ⇒ V I = 0 or V I = V

If V I = V , then the action of D factors through D/I. The latter is abelian (cyclic) ⇒ V is 1
dimensional

Remark. So representations of D look like V = A⊕B with
AI = 0 , B = V I =

⊕
(1-dimensional representations of D/I)

Notation:
For V a D-representation, write

Φq / p(V, t) = det
V I

(tId− Frob) (2.32)

= char polynomial of Frobq / p on V I (2.33)
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Lemma 2.14
Let Ψ : D → D/I = ⟨Frob⟩ → C× be a 1-dimensional representation of D, say Ψ(Frob) = ζ
Then for a D-representation V

⟨Ψ, V ⟩ = ⟨Ψ, V I⟩ = multiplicity of (t− ζ) in Φq / p(t) (2.34)

Proof
First equality is by definition Second equality is clear from previous remark. Example of this equality
is Φ(Ψ, t) = t− ζ

Remark. This Φ simply encodes the multiplicities of the 1-dimensional representation of D/I in a
representation of D

Proposition 2.15
K ⊆ L ⊆ F intermediate field
V a representation of H = Gal(F/L), then

Φq / p

(
ResGD IndGH V, t

)
=
∏
s

Φq /s

(
ResHDpi /s

V, tfs/ p

)
(2.35)

where s runs over the primes of L above p, and qi lies above s (a prime of F )

Proof
Will show that LHS and RHS have the same roots with same multiplicities. Note that the roots are
fq / p-th roots of unity
Let S be such a root, and set Ψ : D → D/I → C× with Ψ(Frob) = ζ, then

multiplicity of
t− ζ in LHS

= ⟨Ψ,ResGD IndGH V ⟩ by Lemma 2.14 (2.36)

=
∑

x∈H\G/D

⟨Ψ, IndDx−1Hx∩D Resx
−1Hx

x−1Hx∩D V
x⟩ (2.37)

=
∑
s

⟨Ψx−1
, Ind

Dqi / p

Dqi /s
ResHDqi /s

V ⟩ by Lemma 2.10(3) (2.38)

=
∑
s

⟨ResDqi /s
Ψx−1

,ResDqi /s
V ⟩ by Frobenius Reciprocity (2.39)

=
∑
s

multiplicity of
(
t− ζfs/ p

)
in Φqi /s

(
ResHDqi /s

V, t
)

(2.40)

=
∑
s

multiplicity of (t− ζ) in Φqi /s

(
ResHDqi /s

V, tfs/ p

)
(2.41)
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Corollary 2.16
Take Ψn : D → D/I → C× which maps Frob to ζ a primitive n-th root of unity (n|fq / p), then

number of primes s of L
above p with n|fs/ p

= ⟨Ψn,ResD IndGH︸ ︷︷ ︸
C[G/H]

1⟩ (2.42)

Proof

⟨Ψn,ResD IndGH 1⟩ =
multiplicity of t− ζ
in Φq / p(Res Ind1, t)

by Lemma 2.14 (2.43)

=
∏
s

Φqi /s

(
1, tfs/ p

)
by Proposition 2.15 (2.44)

=
multiplicity of ζ

in
∏

s

(
tfs/ p − 1

) (2.45)

=
number of prime s

with n|fs/ p
(2.46)

Exercise: Deduce Corollary 2.16 from Proposition 2.12

3 L-series

Aim/Motivation:

(i) If (a, n) = 1, then ∃ infinitely many primes p ∼= a mod n

(ii) If f(X) ∈ Z[X], monic, and suppose that f(X) mod p has a root ∀ prime p ⇒ f(X) reducible

Definition 3.1
An (ordinary) Dirichlet series is a series

f(s) =

∞∑
n=1

ann
−s (an ∈ C, s ∈ C)

(Warning/Convention: The complex variable is s = σ + it, NOT z = x+ iy)

3.1 Convergence Properties

Lemma 3.2 (Abel’s Lemma)

M∑
n=N

anbn =
M−1∑
n=N

(
n∑

k=N

ak

)
(bn − bn+1) +

(
M∑

k=N

ak

)
bM (3.1)

Proof
Elementary rearrangement

(c.f.
∫
udv = [uv]−

∫
vdu, a↔ dv, b↔ du)
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Proposition 3.3
Let

f(s) =

∞∑
n=1

ane
−λns for λn →∞ (3.2)

increasing sequence of positive real numbers

(i) If the partial sums
∑M

n=N an are bounded, then the series converges locally uniformly on Re(s) >
0 to an analytic function

(ii) If the series f(s) converges for s = s0, then it converges locally uniformly on Re(s) > Re(s0) to
an analytic function

Note: Dirichlet series are the case λn = log n

Proof
(i)⇒ (ii):
Change variables s′ = s− s0 , a′n = ane

−λns0

The new series converges at 0, so must have
∑M

N a′n bounded. Invoke (i)

(ii): We show uniform convergence on −A < arg(s) < A,Re(s) > δ with 0 < A < π/2. This will
suffice as the uniform limit of analytic functions is analytic
Let ϵ > 0. Find N0 s.t. for n ≥ N0 have

∣∣e−λns
∣∣ < ϵ in this domain.

Now compute for N,M ≥ N0,∣∣∣∣∣
M∑

n=N

ane
−λns

∣∣∣∣∣ =

∣∣∣∣∣
M−1∑
n=N

(
n∑

k=N

ak

)(
e−λns − e−λn+1s

)
+

(
M∑
N

ak

)
e−λMs

∣∣∣∣∣ (3.3)

(by Abel’s Lemma 3.2)

≤ B

M−1∑
n=N

∣∣∣e−λns − e−λn+1s
∣∣∣+Bϵ (3.4)

where B is the bound on the partial sums
∑
ak

Observe that ∣∣∣e−αs − e−βs
∣∣∣ =

∣∣∣∣s∫ β

α
e−xsdx

∣∣∣∣
= |s|

∫ β

α
e−xσdx (σ = Re(s))

=
|s|
σ

(
e−ασ − e−βσ

)
(3.5)

Therefore, ∣∣∣∣∣
M∑

n=N

ane
−λns

∣∣∣∣∣ ≤ B
|s|
σ

M−1∑
n=N

(
e−λnσ − e−λn+1σ

)
+Bϵ (3.6)

= B
|s|
σ

(
e−λNσ − e−λMσ

)
+Bϵ (3.7)

≤ ϵ

(
B
|s|
σ

+B

)
≤ ϵ(Bk +B) where

|s|
σ
≤ k in our domain (3.8)

This is uniform convergence

Proposition 3.4
Let f(s) =

∑∞
n=1 ane

−λns for λn →∞ increasing sequence of positive real numbers. Suppose
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(i) 0 ≤ an ∈ R

(ii) f(s) converges on Re(s) > R ∈ R (and hence analytic there)

(iii) It has an analytic continuation to a neighbourhood of s = R

Then f(s) converges on Re(s) > R− ϵ for some ϵ > 0

Proof
Again, we may assume R = 0
f analytic on Re(s) > 0 and on |s| < δ
⇒ f analytic on |s− 1| ≤ 1 + ϵ
The Taylor series of f around s = 1 converges on all of |s− 1| ≤ 1 + ϵ. In particular

f(−ϵ) =
∞∑
k=0

1

k!
(−1)k(1 + ϵ)kf (k)(1) converges (3.9)

For Re(s) > 0

f (k)(s) =

∞∑
n=1

an(−λn)ke−λns

(
term-by-term differentiation okay
by locally uniform convergence

)
(3.10)

(−1)kf (k)(1) =

∞∑
n=1

anλ
k
ne

−λns a convergent series with positive terms (3.11)

Observe:

f(−ϵ) =

∞∑
k=0

1

k!
(1 + ϵ)k

∞∑
n=1

anλ
k
ne

−λns (3.12)

=
∑
k,n

anλ
k
ne

−λns 1

k!
(1 + ϵ)k

(
order does not matter
as all terms positive

)
(3.13)

=

∞∑
n=1

ane
−λneλn(1+ϵ) (3.14)

=

∞∑
n=1

ane
λnϵ is a convergent series (3.15)

Therefore, series for f converges at s = −ϵ, and hence, by Proposition 3.3, on Re(s) > −ϵ

Exercise:
Show that, if

∑
ane

−λns and
∑
bne

−λns converges on Re(s) > σ0 to the same function f(s), then
an = bn ∀n

Theorem 3.5

(i) If an are bounded, then
∑∞

n=1 ann
−s converges absolutely on Re(s) > 1 to an analytic fucntion

(ii) If partial sums
∑M

n=N an are bounded, then
∑
ann

−s converges on Re(s) > 0 to an analytic
function

Proof
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(i)
∑ 1

nx converges for x > 1 real. Analyticity from Proposition 3.3

(ii) by Proposition 3.3

3.2 Dirichlet L-functions

Definition 3.6
Let N ≥ 1 be an integer and

ψ : (Z /N Z)× → Ct imes (3.16)

a group homomorphism. Extend ψ to all of Z by

ψ(n) =

{
ψ(n mod N) if (n,N) = 1

0 otherwise
(3.17)

Such a function is called Dirichlet character modulo N
Its L-series (or L-function) is

LN (ψ, s) =
∞∑
n=1

ψ(n), n−s (3.18)

Remark. ψ : (Z /N Z)× → C× is often called Dirichlet character
Warning: Note that ψ is just a 1-dimensional representation. Number theorists often have the (bad)
habit of referring to 1-dimensional representations as characters

Lemma 3.7
Let ψ be a Dirichlet character modulo N

(i) ψ(a+N) = ψ(a) (i.e. ψ periodic)

(ii) ψ(ab) = ψ(a)ψ(b) (ψ is strictly multiplicative)

(iii) The L-series of ψ converges absolutely on Re(s) > 1 and satisfies

LN (ψ, s) =
∏

p prime

1

1− ψ(p)p−s
(3.19)

(This expression is called the Euler product for ψ)

Proof

(i) Clear

(ii) Clear

(iii) Coefficients, ψ(n), of the L-series are bounded, so absolute convergence follows from Theorem
3.5(i). For Re(s) > 1∑

ψ(n)n−s =
∏

p prime

(
1 + ψ(p)p−s + ψ(p)2p−2s + ψ(p)3p−3s + · · ·

)
by (ii) and absolute convergence(3.20)

=
∏

p prime

1

1− ψ(p)p−s
Geometric series (3.21)
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Example:
Take N = 10, so (Z /N Z)× = {1, 3, 7, 9} ∼= C4

and take ψ with ψ(1) = 1, ψ(3) = i, ψ(7) = −i, ψ(9) = −1. Then

L10(ψ, s) = 1 +
i

3s
− i

7s
− 1

9s
+

1

11s
+

1

13s
− 1

17s
− 1

19s
+ · · · (3.22)

Remark. The case ψ : (Z /nZ)× → C× with ψ(n) = 1 ∀n ∈ (Z /N Z)× gives the trivial Dirichlet
character modulo N . In this case

LN (ψ, s) = ζ(s)
∏

prime p|N

(
1− p−s

)
(3.23)

(ζ(s) =Riemann ζ-function, both sides are
∏

p-N 1/(1− p−s))

Theorem 3.8
Let N ≥ 1 and ψ : (Z /N Z)× → C×

(i) If ψ is the trivial character, then LN (ψ, s) has analytic continuation to Re(s) > 0 except for a
simple pole at s = 1

(ii) If ψ is non-trivial, then LN (ψ, s) is analytic on Re(s) > 0

Proof

(i) Follows from last remark and that ζ(s) has an analytic continuation to Re(s) > 0 with a simple
pole at s = 1 (c.f. Part II Number Theory)

(ii)

A+N+1∑
n=A

ψ(n) =
∑

n∈(Z /N Z)×
ψ(n) (3.24)

= ⟨ψ,1⟩ (representation of (Z /N Z)×) (3.25)

= 0 as ψ ̸= 1 (3.26)

So the sums
∑B

n=A ψ(n) are bounded, and result follows from Theorem 3.5(ii)

Theorem 3.9
Let ψ be a non-trivial Dirichlet character modulo N .
Then LN (ψ, 1) ̸= 0

Proof
Let

ζN (s) =
∏

χ(Z /N Z)×→C×

LN (χ, s) (3.27)

Suppose LN (psi, 1) = 0. Then ζN (s) has an analytic continuation to Re(s) > 0 by Theorem 3.8, the
pole from LN (1, s) having been killed by the zero of LN (ψ, s)
On Re(s) > 1, ζN (s) has the absolute convergence Euler product

ζN (s) =
∏
χ

∏
p

1

1− χ(p)p−s
=
∏
p

∏
χ

1

1− χ(p)p−s
(3.28)
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Now, ∏
χ

(1− χ(p)T ) =
(
1− T fp

)ϕ(N)/fp
(3.29)

where fp=order of p modulo N , and ϕ is the Euler-totient function.

Indeed, the χ(p) are fp-th roots of unity, each occuring ϕ(N)/fp times and
∏fp−1

i=0

(
1− ζifpT

)
= 1−T fp

So on Re(s) > 1, ζn(s) has a Dirichlet series give by

ζN (s) =
∏

p - N
(
1 + p−fps + p−2fps + · · ·

)ϕ(N)/fp
(3.30)

By Proposition 3.4, as ζN (s) is assumed analytic on Re(s) > 0 and this series has positive coefficients,
the series must converge on Re(s) > 0. But (for s > 0 real) it dominates∏

p-N

(
1 + p−fps + p−2fps + · · ·

)
= LN (1, ϕ(N)s) (3.31)

which diverges when s→ 1/ϕ(N) #

Want: ∑
p∼=a mod N

p−s →∞ as s→ 1 (3.32)

3.3 Primes in Arithmetic Progressiona

Proposition 3.10
Let ψ be Dirichlet character mod N

(i) The Dirichlet series
∑

p primes,n≥1

ψ(p)n

n
p−ns converges absolutely on Re(s) > 1 to an analytic

function and defines (a branch of) logLN (ψ, s) there

(ii) If ψ is non-trivial then
∑
p>n

ψ(p)n

n
p−ns is bounded as s→ 1

If ψ = 1 then
∑
p>n

psi(p)n

n
p−ns ∼ log

1

s− 1
as s→ 1

Proof

(i) The series has bounded coefficients so converges absolutely on Re(s) > 1 to an analytic function
(Theorem 3.5(i)). Then

∑
p>n

psi(p)n

n
p−ns =

∑
p

ψ(p)p−s =
ψ(p)2p−2s

2
+ · · · (3.33)

=
∑
p

log
1

1− ψ(p)p−s
(3.34)

= log
∏
p

1

1− ψ(p)p−s

continuity of log and
local uniform converges of LN (ψ, s)

(3.35)

= logLN (ψ, s) (3.36)
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Note, in equation 3.34, the branch we took is

log(1− x) = x+
x2

2
+
x3

3
+ · · · for x small (3.37)

And at the end, it is possible that we will get a different branch of log

(ii) By Theorem 3.8 if ψ is non-trivial the LN (ψ, s) converges to a nonzero value as s → 1, so its
logarithm is bounded near s = 1
LN (ψ, s) have a simple pole at s = 1 ⇒ sim λ

s−1

logLN (1, s) ∼ log
1

s− 1
as s→ 1 (3.38)

Corollary 3.11

If ψ nontrivial then
∑

p prime

ψ(p)p−s is bounded as s→ 1.

If ψ = 1 then
∑

p prime

ψ(p)p−s =
∑
p-N

p−s ∼ log
1

s− 1
as s→ 1

Proof ∑
p

ψ(p)p−s = logLN (ψ, s)−
∑
p,n≥2

ψ(p)n

n
p−ns (3.39)

So sufficient to prove that, the last term is bounded on Re(s) > 1. But there∣∣∣∣∣∣
∑
p,n≥2

ψ(p)n

n
p−ns

∣∣∣∣∣∣ ≤
∑
p,n≥2

1

|ps|n
(3.40)

=
∑
p

1

|ps|2(|ps| − 1)
Geometric series (3.41)

≤
∑
p

1

p(p− 1)
Re(s) > 1 (3.42)

≤
∑
n

1

n2
<∞ (3.43)

Theorem 3.12 (Dirichlet’s Theorem on Primes in Arithmetic Progressions)
Let a,N be coprime integers. Then there are infinitely many primes p with p ∼= a mod N
Moreover, if Pa is the set of these primes, then∑

p∈Pa

1

ps
∼ 1

ϕ(N)
log

1

s− 1
as s→ 1 (3.44)

Proof
Second statement ;⇒ First statement. So we will prove the second statement.

Consider the (class) function

Ca : (Z /nZ)× → C (3.45)

Ca(n) =

{
1 if n ∼= a

0 otherwise
(3.46)
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Then

⟨Ca, χ⟨=
1

ϕ(N)

∑
n∈(Z /nZ)×

Ca(n)chi(n) =
1

ϕ(N)
χ(a) (3.47)

⇒ Ca =
∑

χ:(Z /nZ)×→C×

χ(a)

ϕ(N)
χ (3.48)

Hence ∑
p∈Pa

1

ps
=

∑
p prime

Ca(p)p
−s =

∑
χ

(
χ(a)

ϕ(N)

∑
p

χ(p)

ps

)
(3.49)

Each term on RHS is bounded as s→ 1 except χ = 1 (by Corollary 3.11) and

1(a)

ϕ(N)

∑
p

1(p)

ps
=

1

ϕ(N)

∑
p

1

ps
∼ 1

ϕ(N)
log

1

s− 1
(3.50)

as s→ 1

Summary:

∑
p∼=a mod N

p−s =
linear combination of

∑
p χ(p)p

−s

with 1
ϕ(N) copies of 1

(3.51)

each
∑

χ(p)p−s = ≈ logLN (χ, s) (3.52)

and these are bounded for χ ̸= 1 (LN (χ, 1) ̸= 0,∞) and ∼ log 1s− 1 for χ = 1

3.4 Dirichlet Characters, Alternative view

We want to pass Dirichlet from Z,Q to OK ,K and look at mod I (correspond to APs)

Note:

(Z /N Z)× ∼−→ Gal(Q(ζN )/Q) (3.53)

a 7→ σa with σa(ζN ) = ζaN (3.54)

p 7→ σp with σp(ζN ) = ζpN (3.55)

If q ⊆ Q(ζN ) above p - N , then σp = Frobq /p

⇒ 1

1− ψ(p)p−s
←→ 1

1− ψ(Frobp)p−s
(3.56)

(Frobp = Frobq /p and q |p)

Theorem 3.13 (Hecke, 1920, Class Field Theory related)
Let F/K be a Galois extension of number fields with Gal(F/K) abelian, and ψ : Gal(F/K) → C× a
homomorphism. Then

L∗(ψ, s) =
∏

p prime in K
unram. in F/K

1

1− ψ(Frobp)N(p)−s
(3.57)

has an analytic continuation to C, except for a simple pole at s = 1 when ψ = 1 (Note:
p unramified ⇒ Inertia group=1, and
Frobp = Frobq / p independent of q as Gal(F/K) is abelian)
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Proof
Beyond syllabus

Remark. When K = Q, F = Q(ζN ), this recovers Theorem 3.8

3.5 Artin L-functions

AIM: Prove f(X) has a root mod all prime ⇒ f(X) reducible
Recall (Noatation):
For I ≤ D finite groups and ρ a D-representation

• ρI = I-invariant vectors of ρ = {v ∈ ρ|gv = v ∀g ∈ I}

• If I ▹D then ρI is a subrepresentation
(v ∈ ρI , g ∈ D, i ∈ I
⇒ i(gv) = g(i′v) = gv (for some i′ ∈ I)
⇒ gv ∈ ρI)

• If λ ∈ C, gi ∈ D, write det(
∑
λigi|ρ) for det ρ(

∑
λigi)

equivalent viewing ρ as ρ : D → GLn(C)
det(λigi|ρ) = det(

∑
λiρ(gi))

e.g. charactieristic polynomial of g ∈ D is det(t− g|ρ)

Definition 3.14
Let F/K be Galois extension of number fields and ρ a Gal(F/K)−representation.
Let p be a prime in K. Choose a prime in F above p and an element Frobp ∈ Dq / p which maps to
Frobq / p ∈ Dq/Iq, i.e. that acts as Frobenius on the residue field at q
Then the local polynomial of ρ at p is

Pp(F/K, ρ, T ) = Pp(ρ, T ) = det(1− Frobp T |ρIp) (3.58)

where Ip = Iq / p

Remark. This is essentially the characteristic polynomial of Frobp on ρ, Φq / p(ρ, T )
If Pp(ρ, T ) = 1 + a1T + a2T

2 + · · ·+ anT
n

then Φq / p(ρ, T ) = Tn + a1Tn−1 + a2T
n−2 + · · ·+ an

Lemma 3.15
Pp(ρ, T ) independent of the choice of q and of the choice of Frobp

Proof
For fixed q, independence of choice of Frobp is clear.
Two choices differ by some i ∈ I which acts as identity on ρI

If q′ is a different prime over p, write q′ = g(q) for some g ∈ Gal(F/K) and observe Frob′p = g Frobp g
−1

is a lift of Frobenius for q′ / p.
The equivalence of Frob′p on ρIq′ / p = ρgIpg

−1
are the same as of Frobp on ρIp

Hence, their characteristic polynomials agree
⇒ Pp(ρ, T ) is independent of choice of q

Definition 3.16
Let F/K be a Galois extension of number fields. ρ a representation of Gal(F/K)
The Artin L-function of ρ is defined by the Euler product

L(F/K, ρ, s) = L(ρ, s) =
∏

p prime of K

1

Pp(ρ,N(p)−s)
(3.59)

28



The polynomial Pp(ρ, T ) has the form 1− (aT + bT 2 + · · · )
so we can write (ignoring convergence)

1

Pp(ρ, T )
− 1 + (aT + bT 2 + · · · ) + (aT + bT 2 + · · · )2 + · · · (3.60)

Formally substituting this into the Euler product gives the expression (Artin L-series)

L(ρ, s) =
∑

n non-zero
ideal in OK

anN(n)−s =

[∏
p

(1 + apN(p)−s + ap2N(p)−2s + · · · )

]
(3.61)

for some an ∈ C
Note that the grouping ideal with equal norm yields an expression for L(ρ, s) as an ordinary Dirichlet
series

Lemma 3.17
The L-series expression for L(ρ, s) agrees with the Euler product on Re(s) > 1 where they converge
absolutely to an analytic function

Proof
It suffices to prove that ∏

p prime of OK

(1 + apN(p)−s + ap2N(p)−2s + · · · ) (3.62)

converges absolutely on Re(s) > 1, this justifies rearrangement of terms and the Dirichlet series
expression for L(ρ, s) then proves analyticity (Proposition 3.3)
The polynomial Pp(ρ, T ) factorises over C as

Pp(ρ, T ) = (1− λ1T )(1− λ2T ) · · · (1− λkT ) (3.63)

for some k ≤ dim ρ and |λi| = 1
So the coefficients of

1

Pp(ρ, T )
=

1∏
(1− λiT )

= 1 + apT + ap2T
2 + · · · (3.64)

are bounded in absolute value by those of
1

(1− T )dim ρ
= (1 + T + T 2 + · · · )dim ρ

Hence, ∏
p

∑
n

|apn ||N(p)−ns| ≤
∏
p

1

(1− |N(p)−s|)dim ρ
(3.65)

≤
∏
p

1

(1− |p−s|)dim ρ
(p a rational prime below p) (3.66)

≤
∏

p prime

(
1

1− |p−s|

)dim ρ[K:Q]

(3.67)

= ζ(σ)dim ρ[K:Q] where σ = Re(s) (3.68)

< ∞ (3.69)
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Example:

(i) K = Q F arbitrary ρ = 1

For a prime p, ρIp = ρ and Frobp acts as identity so Pp(ρ, T ) = 1− T

⇒ L(F/Q,1, s) =
∏
p

1

1− p−s
= ζ(s) (3.70)

(Note that this does not depends on F , and all factors are in place)

(ii) K,F are arbitrary, ρ = 1

L(F/K,1, s) =
∏
p

1

1−N(p)−s
= ζK(s) (3.71)

This is the Dedekind ζ-function of K

(iii) K = Q, F = Q(ζN ), ρ 1-dimensional representation of Gal(Q(ζN )/Q) ∼= (Z /N Z)×
Set

ψ : (Z /N Z)× → C× (3.72)

ψ(n) = ρ(σn) where σn(ζN ) = ζnN (3.73)

⇒ L(ρ, s) =
∏

p:ρ(Ip)=1

1

1− ρ(Frobp)p−s
(3.74)

=
∏

p:ρ(Ip)=1

1

1− ψ(p)p−s
(3.75)

= LN (ψ, s)
∏

p|N,ρ(Ip)=1

1

1− ρ(Frobp)p−s
(3.76)

for example, if ρ is faithful then L(ρ, s) = LN (ψ, s)

Proposition 3.18
F/K Galois extension of number fields, ρ a Gal(F/K)-representation

(i) If ρ′ another Gal(F/K)-representation, then

L(ρ⊕ ρ′, s) = L(ρ, s)L(ρ′, s) (3.77)

(ii) If N ▹ Gal(F/K) lies in ker ρ, so that ρ comes from a representation, ρ′′, of Gal(F/K)/N =
Gal(FN/K), then

L(F/K, ρ, s) = L(FN/K, ρ′′, s) (3.78)

(iii) (Artin Formalism) If ρ = Ind
Gal(F/K)
H ρ′′′ for a representation ρ′′′ of H ⊆ Gal(F/K), then

L(F/K, ρ, s) = L(F/FH , ρ′′′, s) (3.79)

Proof
It is sufficient to check each statement prime-by-prime for the local polynomials

(i) Clear. (Note (ρ⊕ ρ′)Ip = ρIp ⊕ ρ′Ip)

(ii) Straight from the definitions (Note Frobenius for F/K projects to Frobenius for FN/K and
similarly for inertia)
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(iii) We have already proved this in Proposition 2.15 (for characteristic polynomial Φ) and the remark
under Definition 3.14 (to get local polynomials)

Theorem 3.19
(This theorem rephrase Theorem 3.13) F/K Galois extension of number fields, ρ a 1-dimensional
representation of Gal(F/K)
Then L(ρ, s) has analytic continuation of C, except for a simple pole at s = 1 if ρ = 1

Proof
By Proposition 3.18(ii), we may assume that ρ is faithful

⇒ ρIp =

{
ρ p unramified in F/K

0 p ramified
(3.80)

Then by Theorem 3.13:

L(ρ, s) =
∏

p unram
in F/K

1

1− ρ(Frobp)N(p)−s
(3.81)

Theorem 3.20 (Artin)
Let G be a finite group, ρ a G-representation.
There are cyclic subgroups Hi,H

′
j ≤ G and 1-dimensional representations ψi, ψ

′
j of Hi,H

′
j respectively,

s.t.
ρ⊕n ⊕

(⊕
IndGHi

ψi

)
∼=
⊕
j

IndGHj
ψ′
j (3.82)

for some n ≥ 1
Moreover, if ⟨ρ,1⟩ = 0 then all ψi, ψ

′
j can be taken to be non-trivial

(see handout for proof, non-examinable)

Corollary 3.21 (Artin)
F/K Galois extension of number fields, ρ a Gal(F/K)-representation.
Then ∃n ≥ 1 s.t. L(ρ, s)n admits a meromorphic continuation to C
(and analytic at s = 1 if ⟨ρ,1⟩ = 0)

Proof
Combine Theorem 3.20 with Proposition 3.18 and Theorem 3.19:

Equation 3.82 gives

L(ρ, s)n
∏

L(Indψi, s) =
∏

L(Indψ′
j , s) (3.83)

⇒ L(ρ, s)n =

∏
L(Indψ′

j , s)∏
L(Indψi, s)

(3.84)

The numerator and denominator of the fraction are both analytic, thus L(ρ, s)n meromorphic

Corollary 3.22
If ρ irreducible non-trivial, then L(ρ, s) is analytic and non-zero at s = 1
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Proof
Write R for the regular representation of Gal(F/K). Then

ζF (s) = L(F/K,R, s) Prop 3.18(iii) (3.85)

=
∏

T irred.L(F/K, T, s)dimT (3.86)

= ζK(s)
∏

irred T ̸=1
L(F/K, T, s)dimT (3.87)

ζF (s), ζK(s) have simple poles at s = 1
⇒∗ L(ρ, s)n cannot have a zero at s = 1
⇒ L(ρ, s) can be analytically continued to s = 1 and is non-zero there.
(*: using L(T, s) are bounded at s = 1)

Theorem 3.23 (Artin-Brauer (non-examinable))
L(ρ, s) is meromorphic on all of C

Lemma 3.24
(This lemma strengthen Theorem 3.19) F/K Galois, ρ ̸= 1 1-dimensional representation of Gal(F/K).
Then L(ρ,1) ̸= 0

Proof
By Proposition 3.18(ii) we may assume that ρ is faithful, so Gal(F/K) is abelian (cyclic). Then (by
Proposition 3.18(i),(iii))

ζF (s) =
∏

χ1-dim repn of Gal(F/K)

L(χ, s) = ζK(s)
∏
χ̸=1

L(χ, s) (3.88)

As ζF , ζK have a simple pole at s = 1 and all other L(χ, s) are analytic there, it follows that L(χ,1) ̸= 0
In particular, L(ρ,1) ̸= 0

3.6 Density Theorems

Definition 3.25
Let S be a set of prime numbers. Then S has Dirichlet density α if∑

p∈S

p−s

log 1
1−s

→ α as s→ 1+ (3.89)

Example:
By Dirichlet’s Theorem (Theorem 3.12)

• The set of all primes has density 1

• Sa,N = {p prime, p ∼= a mod N} has density 1
ϕ(N) whenever (a,N) = 1

Notation:
For F/Q Galois, p unramified in F , write Frobp ∈ Gal(F/Q) for the Frobenius element Frobq /p of
some prime q above p. Note that it lies in well-defined conjugacy class of Gal(F/Q), as (c.f. Example
Sheet 2)

Frobq′ /p = xFrobp x
−1 when q′ = x(p) (3.90)

Example:
Let F = Q(ζN ) and σa ∈ Gal(F/Q) with σa(ζN ) = ζaN
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For p - N , Frobp = σa⇔ p ∼= a mod N (as Frobp(ζN ) = ζpN )
So Dirichlet Theorem ⇒

SN,σ = {p - N,Frobp = σ} has Dirichlet density
1

|Gal(Q(ζN )/Q)|
i.e. Frobp is “uniformly distributed” among Gal(Q(ζN )/Q)

Theorem 3.26 (Chebotarev’s Density Theorem)
Let F/Q be a finite Galois extension and C conjugacy class of Gal(F/Q). Then

SC = {p unramified in F/Q s.t. Frobp ∈ C} has Dirichlet density |C|
|Gal(F/Q)|

Corollary 3.27 (Frobenius)
let f(X) ∈ Z[X] be a monic irreducible polynomial. The set of primes p such that f(X) mod p
factorises as a product of irreducible polynomials of degree d1, . . . , dn has Dirichlet density:

|{g ∈ Gal(f) has cycle type (d1, d2, . . . , dn) on roots of f}|
|Gal(f)|

(3.91)

Proof
f(X) mod p has a repeated root in Fp modulo only finitely many primes.
For the rest, Frobp acts as an element of cycle type (d1, . . . , dn) where these are the degrees of the
irreducible factors of f(X) mod p

Example:
f(X) irreducible quintic, with Galois group S5

• prime p s.t. f(X) mod p is irreducible has density
|{5−cycles in S5}|

120 = 24
120 = 1

5

• primes p s.t. f(X) mod p splits into linear factors has density 1
120

• primes p s.t. f(X) mod p = quadratic×cubic has density 20
120 = 1

6

Corollary 3.28
If f(X) ∈ Z[X] monic irreducible with deg f > 1, then f(X) mod p has no root in Fp for infinitely
many primes p

Proof
Sufficient to prove: ∃g ∈ Gal(F/Q) that fixes no root of f(X)

But
∪

α roots StabGal(f)(α) ̸= Gal(f) since each Stab(α) has size |Gal(f)|
deg f and each contains the identity

element

Proof of Chebotarev’s Density Theorem 3.26
For ρ irreducible representation of Gal(F/Q), let

L∗(ρ, s) =
∏

p unram.

Pp(ρ, p
−s)−1 (3.92)

Step 1:
By Example Sheet 1 Q10, only finitely many primes ramify in F/Q, so Corollary 3.22 ⇒:

• L∗(ρ, s) ̸= 0,∞ at s = 1 if ρ ̸= 1 irreducible
• L∗(1, s) has a simple pole at s = 1
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Step 2:
Write χp for the character of ρ. If ρ unramified in F/Q, and λ1, . . . , λd are the eigenvectors (with
multiplicities) of Frobp on ρ, then

log
1

Pp(ρ, p−s)
= log

1

π(1− λip−s)
(3.93)

=
∑
i

log

(
1

1− λip−s

)
(3.94)

=
(∑

λi

)
p−s +

(∑
λ2i
2

)
p−2s +

(∑
λ3i
3

)
p−3s + · · · (3.95)

=
∑
n≥1

χp(Frob
n
p )

n
p−ns (3.96)

The Dirichlet series ∑
p unram.

∑
n≥1

χp(Frob
n
p )p

−ns

n
(3.97)

has bounded coefficients, so (c.f. Proof of Proposition 3.10) defines an analytic branch of logL∗(ρ, s)
on Re(s) > 1. Now ∑

p unram.

∑
n≥2

χp(Frob
n
p )p

−ns

n
(3.98)

is bounded on Re(s) > 1 by 2 dim ρ
∞∑
k=1

1

k2
(c.f. Proof of Corollary 3.11), so

• fp(s) =
∑

punram

χp(Frobp)p
−s is bounded as s→ 1 on Re(s) if ρ ̸= 1 (by Step 1)

• f1(s) =
∑

punram

p−s ∼ log
1

1− s
as s→ 1

Step 3: ∑
p∈SC

p−s =
∑

p unram

CC(Frobp)p
−s (3.99)

=
∑
ρ

⟨χρ, CC⟩fρ(s) (3.100)

=
|C|

|Gal(F/Q)|
f1(s) +

∑
ρ̸=1

⟨χρ, CC⟩fρ(s) (3.101)

where

CC(g) =

{
0 g /∈ C
1 g ∈ C

(3.102)

Hence SC has density
|C|

|Gal(F/Q)|

(End of examinable material)

Remark. Exam is 2 hours long, to complete 3 questions out of 4 questions, about 50% bookwork.
For representation theory, you should know for C2 × C2, S3, cyclic groups, D8, D10 (with hint),
D2n, S4, A4, Q8, abelian groups (with help sometimes)
For Galois theory, what you must know includes finite fields Fq and cyclotomic fields Q(ζn)
For complex analysis, nothing beyond bookwork (i.e. this lecture notes) is needed
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4 Local Fields

(Warining: This section may be exambinable for Local Fields)

Definition 4.1
A place in a number field K is an equivalence class of (non-trivial) absolute values on K

There are two functors:

• infinte places v (correspond to archimedean absolute values) cam from embedding K ↪→R or
K ↪→C and taking

|x|v =

{
|x| for real embeddings

|x|2 for complex ones
(4.1)

(these are the usual normalisations)
(Note: Complex conjugate embeddings give same | |v)
Fact: The rest don’t and each archimedean absolute value arises in this way
⇒ number of infinite places of K = r1 + r2
• finite places (correspond to non-archimedean absolute values) correspond to primes of K:

If p is a prime, set |x|p = N(p)−ordp(x), where ordp(x) for x ∈ OK is the power of p in factorisation
of (x) and extended multiplicatively to K×

Fact: (Ostrowski) These are inequivalent (for different p) and there are no others

Completions: | |v makes K into a metric space. Its completion Kv is a complete local field

v archimedean ⇒ Kv R or C (this is boring to number theorists)
Hence forth assume v is a finite place

If K = Q and v correspond to p, then Kv = Qp

If K general, v corresponds to q which lies above p ∈ Z then | |v restricted to Q is equivalent to | |p
⇒ Kv is a finite extension of Qp

4.1 Residue field and ramification

K number field, | |v absolute value corresponding to q
OKv ⊆ Kv (elements with |x|v ≤ 1)
O×

Kv
= units (elements with |x|v = 1)

mv = maximal ideal of OKv (elements with |x|v < 1)
kv = OKv /mv = residue field

Observe q ⊂ mv, OK ⊆ OKv , OK / q→ kv

• is injective (clear: a field homomorphism)
• surjective (every element of Kv can be approximated by an element of K)

⇒ OK / q = kv - residue field does not change by completion

If L/K field extension, r lies above q (and | |w correspond to r)

⇒ Lw/Kv finite (4.2)

fr/ q = fw/v (by bove) (4.3)

er/ q = ew/v (compare valuations) (4.4)
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4.2 Galois Groups

F/K Galois extension of number fields, q lies above p, | |w, | |v corresponding absolute values respec-
tively.
If g ∈ Dq / p then it preserve | |w

⇒ it is a topoogical equivalence
⇒ it extends to an automorphism of Fw

⇒ we get Dq / p → Gal(Fw/Kv)

Lemma 4.2
This is an isomorphism

Sketch Proof
Injective: easy
Surjective:

∣∣Dq / p

∣∣ = eq / pfq / p = ew/vfw/v = [Fw : Kv] = |Gal(Fw/Kv)|

Observe also that Iq / p
∼−→ Iw/v also isomorphic

(being the element that act trivially on respective residue field)

4.3 Applications

Proposition 4.3
If f(X) ∈ OK [X] is Eisenstien w.r.t p and α a root
then K(α)/K has degree = deg f and is totally ramified at p

Proof
Complete and invert Local Fields course

Proposition 4.4
Decomposition groups are soluble

Proof
Galois groups of finite extensions of Qp are soluble:
I EG,G/I cyclic
I1 E I with I1/I cyclic (I1 =wild inertia group)
I1 is a p-group

Example 4.5
There are no C4-extensions at Q where quadratic subfield is Q(ζ3)

Proof
Q(ζ3)/Q ramified at 3
⇒ Inertia at 3 must be all of C4

Complete at (the prime of F above) 3, get Fw/Q3 toatally ramified, cyclic of degree 4.

But this is a tame extension (since 3 - 4) ⇒ Gal(Fw/Q3) ↪→F×
3

which is nonsense #
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